首页 » 文章 » 文章详细信息
Physiological Reports Volume 7 ,Issue 7 ,2019-03-29
Comparison of surgical versus diet‐induced weight loss on appetite regulation and metabolic health outcomes
Original Research
Tanya M. Halliday 1 , 2 Sarit Polsky 3 Jonathan A. Schoen 4 Kristina T. Legget 5 Jason R. Tregellas 5 Kayla M. Williamson 6 Marc‐Andre Cornier 1 , 7
Show affiliations
DOI:10.14814/phy2.14048
Received 2018-10-04, accepted for publication 2019-03-07, Published 2019-03-07
PDF
摘要

Abstract Bariatric surgery is associated with significant and sustained weight loss and improved metabolic outcomes. It is unclear if weight loss alone is the main mechanism of improved metabolic health. The purpose of this trial was to compare indices of appetite regulation, insulin sensitivity and energy intake (EI) between participants achieving 10 kg of weight loss via Roux‐en‐Y Gastric Bypass (RYGB) or dietary restriction (DIET); intake of a very low calorie liquid diet (800 kcal/d; 40% protein, 40% fat, 20% carbohydrate that matched the post‐RYGB dietary protocol). Adults qualifying for bariatric surgery were studied before and after 10 kg of weight loss (RYGB [n = 6]) or DIET [n = 17]). Appetite (hunger, satiety, and prospective food consumption [PFC]), appetite–related hormones, and metabolites (ghrelin, PYY, GLP‐1, insulin, glucose, free fatty acids [FFA], and triglycerides [TG]) were measured in the fasting state and every 30 min for 180 min following breakfast. Participants were provided lunch to evaluate acute ad libitum EI, which was similarly reduced in both groups from pre to post weight loss. Fasting ghrelin was reduced to a greater extent following RYGB compared to DIET (P = 0.04). Area under the curve (AUC) for ghrelin (P = 0.01), hunger (P < 0.01) and PFC (P < 0.01) increased after DIET compared to RYGB, following 10 kg weight loss. Satiety AUC increased after RYGB and decreased after DIET (P < 0.01). Glucose and insulin (fasting and AUC) decreased in both groups. FFA increased in both groups, with a greater increase in AUC seen after RYGB versus DIET (P = 0.02). In summary, appetite–related indices were altered in a manner that, if maintained, may promote a sustained reduction in energy intake with RYGB compared to DIET. Future work with a larger sample size and longer follow‐up will be important to confirm and extend these findings.

关键词

roux‐en‐y gastric bypass;gut peptides;energy intake;diet‐induced weight loss;Appetite

授权许可

© 2019 Published by the Physiological Society and the American Physiological Society

图表

Appetite–related peptide response to breakfast test meal pre and post 10 kg of weight loss in participants undergoing RYGB or DIET. Curves for ghrelin (A), PYY (C), and GLP‐1 (E) are shown at 0 min and every 30 min for 180 min following the breakfast meal. Values are means ± SEM. Also shown are individual changes in AUC from pre to post 10 kg of weight loss for ghrelin (B), PYY (D), and GLP‐1 (F). RYGB, Roux‐en‐Y Gastric Bypass (n = 6); DIET, diet‐induced weight loss control group (n = 17); AUC, Area under the curve.

Metabolite response to breakfast test meal pre and post 10 kg of weight loss in participants undergoing RYGB or DIET. Curves for insulin (A), glucose (C), and FFA (E) are shown at 0 min and every 30 min for 180 min following the breakfast meal. Values are means ± SEM. Also shown are individual changes in AUC from pre to post 10 kg of weight loss for insulin (B), glucose (D), and FFA (F). RYGB, Roux‐en‐Y Gastric Bypass (n = 6); DIET, diet‐induced weight loss control group (n = 17); AUC, Area under the curve.

Subjective appetite response to breakfast test meal pre and post 10 kg of weight loss in participants undergoing RYGB or DIET. Curves for hunger (A), satiety (C), and PFC (E) are shown at 0 min and every 30 min for 180 min following the breakfast meal. Values are means ± SEM. Also shown are individual changes in AUC from pre to post 10 kg of weight loss for hunger (B), satiety (D), and PFC (F). Appetite ratings were evaluated with 100 mm VAS. RYGB, Roux‐en‐Y Gastric Bypass (n = 6); DIET: diet‐induced weight loss control group (n = 17); AUC, Area under the curve; PFC, prospective food consumption; VAS, visual analogue scale

Table 1

Table 2

通讯作者

Tanya M. Halliday.Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado;Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, Utah.tanya.halliday@utah.edu

推荐引用方式

Tanya M. Halliday,Sarit Polsky,Jonathan A. Schoen,Kristina T. Legget,Jason R. Tregellas,Kayla M. Williamson,Marc‐Andre Cornier. Comparison of surgical versus diet‐induced weight loss on appetite regulation and metabolic health outcomes. Physiological Reports ,Vol.7, Issue 7(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Cornier, M. A., B. C. Bergman, and D. H. Bessesen. 2006. The effects of short‐term overfeeding on insulin action in lean and reduced‐obese individuals. Metabolism 55:1207–1214.
[2] Goldstone, A. P., A. D. Miras, S. Scholtz, S. Jackson, K. J. Neff, L. Penicaud, et al. 2016. Link between increased satiety gut hormones and reduced food reward after gastric bypass surgery for obesity. J. Clin. Endocrinol. Metab. 101:599–609.
[3] Cornier, M. A., S. S. Von Kaenel, D. H. Bessesen, and J. R. Tregellas. 2007. Effects of overfeeding on the neuronal response to visual food cues. Am. J. Clin. Nutr. 86:965–971.
[4] Cornier, M. A., A. K. Salzberg, D. C. Endly, D. H. Bessesen, D. C. Rojas, and J. R. Tregellas. 2009. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced‐obese individuals. PLoS ONE 4:e6310.
[5] Saper, C. B., T. C. Chou, and J. K. Elmquist. 2002. The need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211.
[6] le Roux, C. W., S. J. Aylwin, R. L. Batterham, C. M. Borg, F. Coyle, V. Prasad, et al. 2006. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243:108–114.
[7] National Institutes of Health EaGRP. 2010. National Cancer Institute. Diet History Questionnaire, Version 2.0. https://epi.grants.cancer.gov/dhq2/
[8] Nguyen, N. Q., T. L. Debreceni, J. E. Bambrick, M. Bellon, J. Wishart, S. Standfield, et al. 2014. Rapid gastric and intestinal transit is a major determinant of changes in blood glucose, intestinal hormones, glucose absorption and postprandial symptoms after gastric bypass. Obesity (Silver Spring, Md) 22:2003–2009.
[9] le Roux, C. W., R. Welbourn, M. Werling, A. Osborne, A. Kokkinos, A. Laurenius, et al. 2007. Gut hormones as mediators of appetite and weight loss after Roux‐en‐Y gastric bypass. Ann. Surg. 246:780–785.
[10] Morinigo, R., J. Vidal, A. M. Lacy, S. Delgado, R. Casamitjana, and R. Gomis. 2008. Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects. Ann. Surg. 247:270–275.
[11] Hall, K. D., K. Y. Chen, J. Guo, Y. Y. Lam, R. L. Leibel, L. E. Mayer, et al. 2016. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 104:324–333.
[12] Harris, P. A., R. Taylor, R. Thielke, J. Payne, N. Gonzalez, and J. G. Conde. 2009. Research electronic data capture (REDCap)–a metadata‐driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42:377–381.
[13] Coutinho, S. R., E. With, J. F. Rehfeld, B. Kulseng, H. Truby, and C. Martins. 2018. The impact of rate of weight loss on body composition and compensatory mechanisms during weight reduction: a randomized control trial. Clin. Nutr. 37:1154–1162.
[14] Diniz Mde, F., V. M. Azeredo Passos, and M. T. Diniz. 2010. Bariatric surgery and the gut‐brain communication–the state of the art three years later. Nutrition 26:925–931.
[15] Harvey, E. J., K. Arroyo, J. Korner, and W. B. Inabnet. 2010. Hormone changes affecting energy homeostasis after metabolic surgery. Mt Sinai J. Med. 77:446–465.
[16] Hassan, Y., V. Head, D. Jacob, M. O. Bachmann, S. Diu, and J. Ford. 2016. Lifestyle interventions for weight loss in adults with severe obesity: a systematic review. Clin. Obes. 6:395–403.
[17] Cummings, D. E., D. S. Weigle, R. S. Frayo, P. A. Breen, M. K. Ma, E. P. Dellinger, et al. 2002. Plasma ghrelin levels after diet‐induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346:1623–1630.
[18] White, M. A., B. L. Whisenhunt, D. A. Williamson, F. L. Greenway, and R. G. Netemeyer. 2002. Development and validation of the food‐craving inventory. Obes. Res. 10:107–114.
[19] Morinigo, R., V. Moize, M. Musri, A. M. Lacy, S. Navarro, J. L. Marin, et al. 2006. Glucagon‐like peptide‐1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 91:1735–1740.
[20] Radloff, L. S. 1977. The CES‐D scale. Appl. Psychol. Meas. 1:385–401.
[21] Quercia, I., R. Dutia, D. P. Kotler, S. Belsley, and B. Laferrere. 2014. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 40:87–94.
[22] Moran, T. H. 2009. Gut peptides in the control of food intake. Int. J. Obes. 33:S7–S10.
[23] Minami, H., and R. W. McCallum. 1984. The physiology and pathophysiology of gastric emptying in humans. Gastroenterology 86:1592–1610.
[24] Johansson, H. E., M. Öhrvall, A. Haenni, M. Sundbom, B. Edén Engström, F. A. Karlsson, et al. 2007. Gastric bypass alters the dynamics and metabolic effects of insulin and proinsulin secretion. Diabetic Med. 24:1213–1220.
[25] Melby, C. L., H. L. Paris, R. M. Foright, and J. Peth. 2017. Attenuating the biologic drive for weight regain following weight loss: must what goes down always go back up? Nutrients 9:468.
[26] Khoo, C. M., M. J. Muehlbauer, R. D. Stevens, Z. Pamuklar, J. Chen, C. B. Newgard, et al. 2014. Postprandial metabolite profiles reveal differential nutrient handling after bariatric surgery compared with matched caloric restriction. Ann. Surg. 259:687–693.
[27] Rodieux, F., V. Giusti, D. A. D'Alessio, M. Suter, and L. Tappy. 2008. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity 16:298–305.
[28] Evans, S., Z. Pamuklar, J. Rosko, P. Mahaney, N. Jiang, C. Park, et al. 2012. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon‐like peptide‐1 and peptide YY independently of caloric restriction. Surg. Endosc. 26:1086–1094.
[29] Behary, P., and A. D. Miras. 2015. Food preferences and underlying mechanisms after bariatric surgery. Proc. Nutr. Soc. 74:419–425.
[30] Benoit, S. C., D. J. Clegg, R. J. Seeley, and S. C. Woods. 2004. Insulin and leptin as adiposity signals. Recent Prog. Horm. Res. 59:267–285.
[31] Tregellas, J. R., K. P. Wylie, D. C. Rojas, J. Tanabe, J. Martin, E. Kronberg, et al. 2011. Altered default network activity in obesity. Obesity (Silver Spring, Md) 19:2316–2321.
[32] Long, C. L., N. Schaffel, J. W. Geiger, W. R. Schiller, and W. S. Blakemore. 1979. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. J. Parenter. Enteral. Nutr. 3:452–456.
[33] Wadden, T. A. 1993. Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials. Ann. Intern. Med. 119:688–693.
[34] Borg, C. M., C. W. le Roux, M. A. Ghatei, S. R. Bloom, A. G. Patel, and S. J. B. Aylwin. 2006. Progressive rise in gut hormone levels after Roux‐en‐Y gastric bypass suggests gut adaptation and explains altered satiety. Br. J. Surg. 93:210–215.
[35] Ochner, C. N., D. M. Barrios, C. D. Lee, and F. X. Pi‐Sunyer. 2013. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol. Behav. 120:106–113.
[36] Maclean, P. S., A. Bergouignan, M. A. Cornier, and M. R. Jackman. 2011. Biology's response to dieting: the impetus for weight regain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:R581–R600.
[37] Ogden, C. L., C. D. Fryar, and K. M. Flegal. 2015. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS data brief, no 219. National Center for Health Statistics, Hyattsville, MD.
[38] Stunkard, A. J., and S. Messick. 1985. The three‐factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 29:71–83.
[39] Freeman, J. M., E. H. Kossoff, and A. L. Hartman. 2007. The ketogenic diet: one decade later. Pediatrics 119:535–543.
[40] Olivan, B., J. Teixeira, M. Bose, B. Bawa, T. Chang, H. Summe, et al. 2009. Effect of weight loss by diet or gastric bypass surgery on peptide YY3‐36 levels. Ann. Surg. 249:948–953.
[41] Maciejewski, M. L., D. E. Arterburn, L. Van Scoyoc, V. A. Smith, W. S. Yancy, H. J. Weidenbacher, et al. 2016. Bariatric surgery and long‐term durability of weight loss. JAMA Surg. 151:1046–1055.
[42] Consensus Panel. 1992. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am. J. Clin. Nutr. 55:615s–619s.
[43] Park, C. W., and A. Torquati. 2011. Physiology of weight loss surgery. Surg. Clin. North Am. 91:1149.
[44] Finkelstein, E. A., J. G. Trogdon, J. W. Cohen, and W. Dietz. 2009. Annual medical spending attributable to obesity: payer‐and service‐specific estimates. Health Aff. 28:w822–w831.
[45] Falken, Y., P. M. Hellstrom, J. J. Holst, and E. Naslund. 2011. Changes in glucose homeostasis after Roux‐en‐Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J. Clin. Endocrinol. Metab. 96:2227–2235.
[46] Buchwald, H., Y. Avidor, E. Braunwald, M. D. Jensen, W. Pories, K. Fahrbach, et al. 2004. Bariatric surgery: a systematic review and meta‐analysis. JAMA 292:1724–1737.
[47] Adochio, R. L., J. W. Leitner, K. Gray, B. Draznin, and M. A. Cornier. 2009. Early responses of insulin signaling to high‐carbohydrate and high‐fat overfeeding. Nutr. Metab. 6:37.
[48] Bryant, E. J., N. A. King, Y. Falken, P. M. Hellstrom, J. J. Holst, J. E. Blundell, et al. 2013. Relationships among tonic and episodic aspects of motivation to eat, gut peptides, and weight before and after bariatric surgery. Surg. Obes. Relat. Dis. 9:802–808.
[49] Allison, D. B., F. Paultre, C. Maggio, N. Mezzitis, and F. X. Pi‐Sunyer. 1995. The use of areas under curves in diabetes research. Diabetes Care 18:245–250.
[50] Scholtz, S., A. D. Miras, N. Chhina, C. G. Prechtl, M. L. Sleeth, N. M. Daud, et al. 2014. Obese patients after gastric bypass surgery have lower brain‐hedonic responses to food than after gastric banding. Gut 63:891–902.
[51] Malik, S., F. McGlone, D. Bedrossian, and A. Dagher. 2008. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7:400–409.
[52] Cornier, M. A., G. K. Grunwald, S. L. Johnson, and D. H. Bessesen. 2004. Effects of short‐term overfeeding on hunger, satiety, and energy intake in thin and reduced‐obese individuals. Appetite 43:253–259.
[53] Sjostrom, L. 2013. Review of the key results from the Swedish Obese Subjects (SOS) trial ‐ a prospective controlled intervention study of bariatric surgery. J. Intern. Med. 273:219–234.
[54] Steinert, R. E., C. Feinle‐Bisset, L. Asarian, M. Horowitz, C. Beglinger, and N. Geary. 2017. Ghrelin, CCK, GLP‐1, and PYY(3‐36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97:411–463.
[55] Burger, K. S., M. A. Cornier, J. Ingebrigtsen, and S. L. Johnson. 2011. Assessing food appeal and desire to eat: the effects of portion size & energy density. Int. J. Behav. Med. Phy. Act. 8:101.
[56] MacLean, P. S., R. R. Wing, T. Davidson, L. Epstein, B. Goodpaster, K. D. Hall, et al. 2015. NIH working group report: innovative research to improve maintenance of weight loss. Obesity (Silver Spring, Md) 23:7–15.
[57] Nielsen, M. S., B. J. Christensen, C. Ritz, S. Rasmussen, T. T. Hansen, W. L. Bredie, et al. 2017. Roux‐En‐Y gastric bypass and sleeve gastrectomy does not affect food preferences when assessed by an ad libitum buffet meal. Obes. Surg. 27:2599–2605.
[58] Manning, S., A. Pucci, and R. L. Batterham. 2015. Roux‐en‐Y gastric bypass: effects on feeding behavior and underlying mechanisms. J. Clin. Investig. 125:939–948.
[59] Nymo, S., S. R. Coutinho, J. Jørgensen, J. F. Rehfeld, H. Truby, B. Kulseng, et al. 2017. Timeline of changes in appetite during weight loss with a ketogenic diet. Int. J. Obes. 41:1224–1231.
[60] Schmidt, J. B., S. D. Pedersen, N. T. Gregersen, L. Vestergaard, M. S. Nielsen, C. Ritz, et al. 2016. Effects of RYGB on energy expenditure, appetite and glycaemic control: a randomized controlled clinical trial. Int. J. Obes. 40:281–290.
[61] Beckman, L. M., T. R. Beckman, and C. P. Earthman. 2010. Changes in gastrointestinal hormones and leptin after Roux‐en‐Y gastric bypass procedure: a review. J. Am. Diet. Assoc. 110:571–584.
[62] Gloy, V. L., M. Briel, D. L. Bhatt, S. R. Kashyap, P. R. Schauer, G. Mingrone, et al. 2013. Bariatric surgery versus non‐surgical treatment for obesity: a systematic review and meta‐analysis of randomised controlled trials. BMJ 347:f5934.
[63] Ochner, C. N., Y. Kwok, E. Conceicao, S. P. Pantazatos, L. M. Puma, S. Carnell, et al. 2011. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann. Surg. 253:502–507.
[64] Garner, D. M., M. P. Olmsted, Y. Bohr, and P. E. Garfinkel. 1982. The eating attitudes test: psychometric features and clinical correlates. Psychol. Med. 12:871–878.
[65] Gibson, C. D., S. Carnell, C. N. Ochner, and A. Geliebter. 2010. Neuroimaging, gut peptides and obesity: novel studies of the neurobiology of appetite. J. Neuroendocrinol. 22:833–845.