首页 » 文章 » 文章详细信息
Journal of Spectroscopy Volume 2019 ,2019-02-17
Processing Window and Microstructure of NiCoCrAlY Coating Deposited on Cast Iron Using Multilayer Laser Cladding
Research Article
Hao Liu 1 , 2 Peijian Chen 3 Haifeng Yang 1 Jingbin Hao 1 Xianhua Tian 1 Xiuli He 4 , 5 Gang Yu 4 , 5
Show affiliations
DOI:10.1155/2019/9308294
Received 2018-07-23, accepted for publication 2018-12-31, Published 2018-12-31
PDF
摘要

Cast iron is an iron-carbon alloy widely used in mechanical engineering. Nickel-base or cobalt-base alloy coatings prepared by laser cladding can improve the surface properties of cast iron, thereby increasing the service life of the components; however, due to the poor weldability and high carbon content of cast iron, the use of laser cladding to prepare alloy coatings faces many difficulties. To reduce the brittleness of the bonded interface, laser cladding was applied to the surface of cast iron using a multilayer deposition strategy. Through testing of the single-track laser cladding, the causes of defects in the coating are analysed, including poor bonding, slag inclusions, and pores. An analytical model based on mass and heat conservation is developed, and a processing window of laser tracks without defects is determined thereby. NiCoCrAlY alloy coating prepared by overlapping laser tracks mainly consists of γ-(Fe, Ni) dendrites and interdendritic M7C3 and M23C6 carbides. Although there are no cracks in a single laser track, cracks are detected when laser tracks are overlapped under the same process parameters. The increase in laser power helps to reduce cracking susceptibility on this occasion. The morphology of the grain in NiCoCrAlY alloy coating is mainly epitaxially grown columnar crystals. The increase in microhardness of the coating is mainly attributed to ductile dendrites, precipitated carbides, and grain refinement.

授权许可

Copyright © 2019 Hao Liu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Hao Liu.School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, China, cumt.edu.cn;Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining & Technology, Xuzhou, China, cumt.edu.cn.liuhao56@cumt.edu.cn

推荐引用方式

Hao Liu,Peijian Chen,Haifeng Yang,Jingbin Hao,Xianhua Tian,Xiuli He,Gang Yu. Processing Window and Microstructure of NiCoCrAlY Coating Deposited on Cast Iron Using Multilayer Laser Cladding. Journal of Spectroscopy ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Z. Lestan, M. Milfelner, J. Balic, M. Brezocnik. et al.(2012). Laser deposition of Metco 15E, Colmony 88 and VIM CRU 20 powders on cast iron and low carbon steel. The International Journal of Advanced Manufacturing Technology.66(9–12):2023-2028. DOI: 10.1016/j.wear.2011.09.005.
[2] H. Liu, X. L. He, G. Yu. (2015). Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding. Science China Physics, Mechanics and Astronomy.58:104701. DOI: 10.1016/j.wear.2011.09.005.
[3] L. Wang, S. D. Felicelli, J. E. Craig. (2009). Experimental and numerical study of the LENS rapid fabrication process. Journal of Manufacturing Science and Engineering.131:041019. DOI: 10.1016/j.wear.2011.09.005.
[4] H. Liu, J. Hao, G. Yu. (2016). A numerical study on metallic powder flow in coaxial laser cladding. Journal of Applied Fluid Mechanics.9(7):2247-2256. DOI: 10.1016/j.wear.2011.09.005.
[5] M. Gäumann, C. Bezençon, P. Canalis, W. Kurz. et al.(2001). Single-crystal laser deposition of superalloys: processing-microstructure maps. Acta Materialia.49:1051-1062. DOI: 10.1016/j.wear.2011.09.005.
[6] P. Y. Xu, Y. C. Liu, P. Yi, C. F. Fan. et al.(2013). Research on variation and stress status of graphite in laser cladding process of grey cast iron. Materials Science and Technology.30(14):1728-1734. DOI: 10.1016/j.wear.2011.09.005.
[7] Y. Huang, X. Zeng. (2010). Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding. Applied Surface Science.256(20):5985-5992. DOI: 10.1016/j.wear.2011.09.005.
[8] P. Yi, Y. Liu, C. Fan, X. Zhan. et al.(2017). Impact analysis of the thermal mechanical coupling characteristics of graphite morphologies during laser cladding of gray cast iron. Optics and Laser Technology.90:52-64. DOI: 10.1016/j.wear.2011.09.005.
[9] M. Gäumann, S. Henry, F. Cléton, J.-D. Wagnière. et al.(1999). Epitaxial laser metal forming: analysis of microstructure formation. Materials Science and Engineering: A.271:232-241. DOI: 10.1016/j.wear.2011.09.005.
[10] K. A. Khor, Y. W. Gu. (2000). Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings. Materials Science and Engineering: A.277(1-2):64-76. DOI: 10.1016/j.wear.2011.09.005.
[11] H. Liu, G. Yu, X. L. He, H. F. Yang. et al.(2017). Microstructrual and mechanical properties of a NiCoCrAlY coating prepared by laser cladding on a compacted graphite cast iron surface. Lasers in Engineering.37:273-289. DOI: 10.1016/j.wear.2011.09.005.
[12] C.-M. Lin, A. S. Chandra, L. Morales-Rivas. (2014). Repair welding of ductile cast iron by laser cladding process: microstructure and mechanical properties. International Journal of Cast Metals Research.27(6):378-383. DOI: 10.1016/j.wear.2011.09.005.
[13] H. Yan, A. Wang, Z. Xiong, K. Xu. et al.(2010). Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying. Applied Surface Science.256(23):7001-7009. DOI: 10.1016/j.wear.2011.09.005.
[14] R. Arabi Jeshvaghani, M. Jaberzadeh, H. Zohdi, M. Shamanian. et al.(2014). Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617. Materials and Design (1980-2015).54:491-497. DOI: 10.1016/j.wear.2011.09.005.
[15] Q. Lai, R. Abrahams, W. Yan. (2018). Effects of preheating and carbon dilution on material characteristics of laser-cladded hypereutectoid rail steels. Materials Science and Engineering: A.712:548-563. DOI: 10.1016/j.wear.2011.09.005.
[16] W. W. Duley. (1976). CO2 Laser Effects and Applications. DOI: 10.1016/j.wear.2011.09.005.
[17] X. C. Zhang, B. S. Xu, H. D. Wang, Y. X. Wu. et al.(2006). Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method. Materials and Design.27:308-315. DOI: 10.1016/j.wear.2011.09.005.
[18] Z. Gan, H. Liu, S. Li, X. He. et al.(2017). Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron. International Journal of Heat and Mass Transfer.111:709-722. DOI: 10.1016/j.wear.2011.09.005.
[19] Y. Liu, X. Zhan, P. Yi, T. Liu. et al.(2018). Research on the transformation mechanism of graphite phase and microstructure in the heated region of gray cast iron by laser cladding. Optics and Laser Technology.100:79-86. DOI: 10.1016/j.wear.2011.09.005.
[20] S. Y. Wen, Y. C. Shin, J. Y. Murthy, P. E. Sojka. et al.(2009). Modeling of coaxial powder flow for the laser direct deposition process. International Journal of Heat and Mass Transfer.52(25-26):5867-5877. DOI: 10.1016/j.wear.2011.09.005.
[21] R. Jendrzejewski, G. Śliwiński, M. Krawczuk, W. Ostachowicz. et al.(2006). Temperature and stress during laser cladding of double-layer coatings. Surface and Coatings Technology.201(6):3328-3334. DOI: 10.1016/j.wear.2011.09.005.
[22] S. Uwe, L. Christoph, F. Klaus. (2003). Some recent trends in research and technology of advanced thermal barrier coatings. Aerosol Science and Technology.7:73-80. DOI: 10.1016/j.wear.2011.09.005.
[23] S. X. Yan, S. Y. Dong, B. S. Xu, Y. J. Wang. et al.(2014). Carbon diffusions in the NiCuFeBSi alloy layer treated by laser cladding on grey cast iron. Rare Metal Materials and Engineering.43:2182-2186. DOI: 10.1016/j.wear.2011.09.005.
[24] H. Liu, J. Hao, Z. Han, G. Yu. et al.(2016). Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron. Journal of Materials Processing Technology.232:153-164. DOI: 10.1016/j.wear.2011.09.005.
[25] C. Bezençon, A. Schnell, W. Kurz. (2003). Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding. Scripta Materialia.49:705-709. DOI: 10.1016/j.wear.2011.09.005.
[26] V. Ocelík, U. de Oliveira, M. de Boer, J. T. M. de Hosson. et al.(2007). Thick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties. Surface and Coatings Technology.201(12):5875-5883. DOI: 10.1016/j.wear.2011.09.005.
[27] T. E. Abioye, D. G. McCartney, A. T. Clare. (2015). Laser cladding of Inconel 625 wire for corrosion protection. Journal of Materials Processing Technology.217:232-240. DOI: 10.1016/j.wear.2011.09.005.
[28] B. Podgornik, J. Vizintin, I. Thorbjornsson. (2012). Improvement of ductile iron wear resistance through local surface reinforcement. Wear.274-275:267-273. DOI: 10.1016/j.wear.2011.09.005.
文献评价指标
浏览 59次
下载全文 5次
评分次数 0次
用户评分 0.0分
分享 0次