首页 » 文章 » 文章详细信息
Journal of Analytical Methods in Chemistry Volume 2019 ,2019-01-02
Ultrasensitive Detection of Pb2+ Based on a DNAzyme and Digital PCR
Research Article
Tao Zhang 1 Cong Liu 1 Wuping Zhou 1 Keming Jiang 1 Chenyu Yin 1 Cong Liu 1 , 2 Zhiqiang Zhang 1 Haiwen Li 1
Show affiliations
DOI:10.1155/2019/3528345
Received 2018-07-12, accepted for publication 2018-10-10, Published 2018-10-10
PDF
摘要

In this study, an ultrasensitive detection method for aqueous Pb2+ based on digital polymerase chain reaction (dPCR) technology and a Pb2+-dependent DNAzyme was developed. In the presence of Pb2+, the Gr-5 DNAzyme was activated and catalyzed the hydrolytic cleavage of the substrate strand, resulting in an increase in the amount of template DNA available for dPCR and a resultant change in the number of droplets showing a positive signal. Moreover, the detection system was found to be sensitive and stable in environmental sample detection. In summary, an ultrasensitive quantitative detection method for Pb2+ within environmental substrates was established.

授权许可

Copyright © 2019 Tao Zhang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Tao Zhang.Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China, cas.cn.zhangtao@sibet.ac.cn
2. Haiwen Li.Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China, cas.cn.lihw@sibet.ac.cn

推荐引用方式

Tao Zhang,Cong Liu,Wuping Zhou,Keming Jiang,Chenyu Yin,Cong Liu,Zhiqiang Zhang,Haiwen Li. Ultrasensitive Detection of Pb2+ Based on a DNAzyme and Digital PCR. Journal of Analytical Methods in Chemistry ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] A. Gao, C.-X. Tang, X.-W. He, X.-B. Yin. et al.(2013). Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)32+intercalation and lead recognition. The Analyst.138(1):263-268. DOI: 10.1016/s1367-5931(00)00194-0.
[2] W. Li, Y. Yang, J. Chen. (2014). Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosensors and Bioelectronics.53:245-249. DOI: 10.1016/s1367-5931(00)00194-0.
[3] E. Chow, D. B. Hibbert, J. J. Gooding. (2005). Electrochemical detection of lead ions via the covalent attachment of human angiotensin I to mercaptopropionic acid and thioctic acid self-assembled monolayers. Analytica Chimica Acta.543(1-2):167-176. DOI: 10.1016/s1367-5931(00)00194-0.
[4] H. A. Godwin. (2001). The biological chemistry of lead. Current Opinion in Chemical Biology.5(2):223-227. DOI: 10.1016/s1367-5931(00)00194-0.
[5] H. Needleman. (2004). Lead poisoning. Annual Review of Medicine.55(1):209-222. DOI: 10.1016/s1367-5931(00)00194-0.
[6] Z. Wang, J. H. Lee, Y. Lu. (2008). Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Advanced Materials.20(17):3263-3267. DOI: 10.1016/s1367-5931(00)00194-0.
[7] C. Fu, W. Xu, H. Wang. (2014). DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction. Analytical Chemistry.86(23):11494-11497. DOI: 10.1016/s1367-5931(00)00194-0.
[8] H.-B. Wang, L. Wang, K.-J. Huang. (2013). A highly sensitive and selective biosensing strategy for the detection of Pb ions based on GR-5 DNAzyme functionalized AuNPs. New Journal Of Chemistry.37(8):2557-2563. DOI: 10.1016/s1367-5931(00)00194-0.
[9] T. Fu, S. Ren, L. Gong. (2016). A label-free DNAzyme fluorescence biosensor for amplified detection of Pb-based on cleavage-induced G-quadruplex formation. Talanta.147:302-306. DOI: 10.1016/s1367-5931(00)00194-0.
[10] C. M. Hindson, J. R. Chevillet, H. A. Briggs. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods.10(10):1003-1005. DOI: 10.1016/s1367-5931(00)00194-0.
[11] S. Arzhantsev, X. Li, J. F. Kauffman. (2011). Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering. Analytical Chemistry.83(3):1061-1068. DOI: 10.1016/s1367-5931(00)00194-0.
[12] R. Saran, J. Liu. (2016). A silver DNAzyme. Analytical Chemistry.88(7):4014-4020. DOI: 10.1016/s1367-5931(00)00194-0.
[13] R. Sanders, D. J. Mason, C. A. Foy, J. F. Huggett. et al.(2013). Evaluation of digital PCR for absolute RNA quantification. PLoS One.8(9). DOI: 10.1016/s1367-5931(00)00194-0.
[14] J. Liu, Y. Lu. (2004). Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb Detection. Journal Of the American Chemical Society.126(39):12298-12305. DOI: 10.1016/s1367-5931(00)00194-0.
[15] R. Sanders, J. F. Huggett, C. A. Bushell, S. Cowen. et al.(2011). Evaluation of digital PCR for absolute DNA quantification. Analytical Chemistry.83(17):6474-6484. DOI: 10.1016/s1367-5931(00)00194-0.
[16] J. Liu, Y. Lu. (2003). A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal Of the American Chemical Society.125(22):6642-6643. DOI: 10.1016/s1367-5931(00)00194-0.
[17] W. Zhou, R. Saran, P.-J. J. Huang, J. Ding. et al.(2017). An exceptionally selective DNA cooperatively binding two CaIons. ChemBiochem.18(6):518-522. DOI: 10.1016/s1367-5931(00)00194-0.
[18] L. Miotke, B. T. Lau, R. T. Rumma, H. P. Ji. et al.(2014). High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Analytical Chemistry.86(5):2618-2624. DOI: 10.1016/s1367-5931(00)00194-0.
[19] W. Zhou, R. Saran, J. Liu. (2017). Metal sensing by DNA. Chemical Reviews.117(12):8272-8325. DOI: 10.1016/s1367-5931(00)00194-0.
[20] P.-J. J. Huang, J. Liu. (2015). Rational evolution of Cd-specific DNAzymes with phosphorothioate modified cleavage junction and Cd sensing. Nucleic Acids Research.43(12):6125-6133. DOI: 10.1016/s1367-5931(00)00194-0.
[21] Y. Shi, H. Wang, X. Jiang. (2016). Ultrasensitive, specific, recyclable, and reproducible detection of lead ions in real systems through a polyadenine-assisted, surface-enhanced Raman scattering silicon chip. Analytical Chemistry.88(7):3723-3729. DOI: 10.1016/s1367-5931(00)00194-0.
[22] T. B. White, A. M. McCoy, V. A. Streva, J. Fenrich. et al.(2014). A droplet digital PCR detection method for rare L1 insertions in tumors. Mobile DNA.5(1). DOI: 10.1016/s1367-5931(00)00194-0.
[23] J. Wu, E. A. Boyle. (1997). Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS. Analytical Chemistry.69(13):2464-2470. DOI: 10.1016/s1367-5931(00)00194-0.
[24] H. Elfering, J. T. Andersson, K. G. Poll. (1998). Determination of organic lead in soils and waters by hydride generation inductively coupled plasma atomic emission spectrometry. The Analyst.123(4):669-674. DOI: 10.1016/s1367-5931(00)00194-0.
[25] N. H. Bings, A. Bogaerts, J. A. C. Broekaert. (2006). Atomic spectroscopy. Analytical Chemistry.78(12):3917-3946. DOI: 10.1016/s1367-5931(00)00194-0.
[26] D.-Q. Feng, W. Zhu, G. Liu, W. Wang. et al.(2016). Dual-modal light scattering and fluorometric detection of lead ion by stimuli-responsive aggregation of BSA-stabilized copper nanoclusters. RSC Advances.6(99):96729-96734. DOI: 10.1016/s1367-5931(00)00194-0.
[27] B. J. Hindson, K. D. Ness, D. A. Masquelier. (2011). High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry.83(22):8604-8610. DOI: 10.1016/s1367-5931(00)00194-0.
[28] Q. Wang, X. H. Yang, L. Wang, K. M. Wang. et al.(2007). Novel fluorescent probe for lead ion detection based on DNAzyme. Chemical Journal Of Chinese Universities-Chinese.28:2270-2273. DOI: 10.1016/s1367-5931(00)00194-0.
[29] J. Liu, A. K. Brown, X. Meng. (2007). A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proceedings of the National Academy of Sciences.104(7):2056-2061. DOI: 10.1016/s1367-5931(00)00194-0.
[30] W. Zhang, B. Shan, D. Liang, Y. Shi. et al.(2016). A photoelectrochemical DNA sensor for the detection of Hg based on Hg-mediated oligonucleotide switching. Analytical Methods.8(43):7762-7766. DOI: 10.1016/s1367-5931(00)00194-0.
[31] M. Baker. (2012). Digital PCR hits its stride. Nature Methods.9(6):541-544. DOI: 10.1016/s1367-5931(00)00194-0.
[32] G. Liu, L. Zhang, D. Dong, Y. Liu. et al.(2016). A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection. Analytical Methods.8(39):7040-7046. DOI: 10.1016/s1367-5931(00)00194-0.
[33] B. Hindson, A. So, R. Koehler, C. Troup. et al.(2012). Ultra-sensitive detection of rare mutants by droplet digital PCR with conventional TaqMan assays. Cancer Research.72(8):4859. DOI: 10.1016/s1367-5931(00)00194-0.
[34] Y. Zhu, D. Deng, L. Xu. (2015). Ultrasensitive detection of lead ions based on a DNA-labelled DNAzyme sensor. Analytical Methods.7(2):662-666. DOI: 10.1016/s1367-5931(00)00194-0.
[35] H. Liang, S. Xie, L. Cui, C. Wu. et al.(2016). Designing a biostable L-DNAzyme for lead(II) ion detection in practical samples. Analytical Methods.8(39):7260-7264. DOI: 10.1016/s1367-5931(00)00194-0.
[36] P. Zhu, Y. Shang, W. Tian, K. Huang. et al.(2017). Ultra-sensitive and absolute quantitative detection of Cu based on DNAzyme and digital PCR in water and drink samples. Food Chemistry.221:1770-1777. DOI: 10.1016/s1367-5931(00)00194-0.
[37] T. Lan, K. Furuya, Y. Lu. (2010). A highly selective lead sensor based on a classic lead DNAzyme. Chemical Communications.46(22):3896-3898. DOI: 10.1016/s1367-5931(00)00194-0.
[38] A. So, B. Hindson, R. Koehler, S. Saxonov. et al.(2012). Detection of rare mutations in plasma by droplet digital PCR. Cancer Research.72(8):3399. DOI: 10.1016/s1367-5931(00)00194-0.
[39] X.-B. Zhang, R.-M. Kong, Y. Lu. (2011). Metal ion sensors based on DNAzymes and related DNA molecules. Annual Review Of Analytical Chemistry.4(1):105-128. DOI: 10.1016/s1367-5931(00)00194-0.
文献评价指标
浏览 49次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 0次