首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2019 ,2019-03-03
Oral Administration of Lactobacillus delbrueckii during the Suckling Phase Improves Antioxidant Activities and Immune Responses after the Weaning Event in a Piglet Model
Research Article
Yinghui Li 1 , 2 , 3 Shuling Hou 1 , 2 , 3 Wei Peng 1 , 2 , 3 Qian Lin 4 Fengming Chen 1 , 2 , 3 Lingyuan Yang 1 , 2 , 3 Fengna Li 5 , 6 , 7 Xingguo Huang 1 , 2 , 3
Show affiliations
DOI:10.1155/2019/6919803
Received 2018-10-24, accepted for publication 2018-12-16, Published 2018-12-16
PDF
摘要

Early colonization in the gut by probiotics influences the progressive development and maturity of antioxidant and immune system functionality in the future. This study investigated the impact of orally administrated Lactobacillus delbrueckii (LAB) during the suckling phase on future antioxidant and immune responses of the host, using a piglet model. One hundred neonatal piglets received saline (CON) or LAB at the amounts of 1, 2, 3, and 4 mL at 1, 3, 7, and 14 d of age, respectively. The piglets were weaned at the age of 21 d and fed until the age of 49 d. Serum, liver, and intestinal samples were obtained at 21, 28, and 49 d of age. The results showed that LAB tended to decrease serum 8-hydroxy-2-deoxyguanosine concentration and decreased the concentration of serum and hepatic malondialdehyde, but increased the activity of hepatic glutathione peroxidase on days 21, 28, and 49. The concentrations of secretory immunoglobulin A and some inflammatory cytokines and chemokines were increased (P<0.05) in the intestinal mucosa of LAB-treated piglets on days 21, 28, and 49 compared to that of CON piglets. Likewise, protein expression of cyclooxygenase 2 and inducible nitric oxide synthase in the intestine of LAB-treated piglets was increased (P<0.05) during the whole period. These results indicate that administration of LAB to the suckling piglet could improve antioxidant capacity and stimulate intestinal immune response, and these long-lasting effects are also observed up to 4 weeks after weaning. A proper utilization of LAB to neonates would be beneficial to human and animal’s future health.

授权许可

Copyright © 2019 Yinghui Li et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Xingguo Huang.College of Animal Science and Technology, Hunan Agricultural University, Changsha Hunan 410128, China, hunau.edu.cn;Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha Hunan 410128, China;Engineering Research Center for Feed Safety and Efficient Utilization of Education, Changsha Hunan 410128, China.huangxi8379@aliyun.com

推荐引用方式

Yinghui Li,Shuling Hou,Wei Peng,Qian Lin,Fengming Chen,Lingyuan Yang,Fengna Li,Xingguo Huang. Oral Administration of Lactobacillus delbrueckii during the Suckling Phase Improves Antioxidant Activities and Immune Responses after the Weaning Event in a Piglet Model. Oxidative Medicine and Cellular Longevity ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. Kullisaar, E. Songisepp, M. Mikelsaar, K. Zilmer. et al.(2003). Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. British Journal of Nutrition.90(2):449-456. DOI: 10.1093/jn/137.3.819S.
[2] L. Zhang, Y. Q. Xu, H. Y. Liu, T. Lai. et al.(2010). Evaluation of GG using an K88 model of piglet diarrhoea: effects on diarrhoea incidence, faecal microflora and immune responses. Veterinary Microbiology.141(1-2):142-148. DOI: 10.1093/jn/137.3.819S.
[3] P. van Baarlen, J. M. Wells, M. Kleerebezem. (2013). Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends in Immunology.34(5):208-215. DOI: 10.1093/jn/137.3.819S.
[4] T. Kuda, Y. Noguchi, M. Ono, H. Takahashi. et al.(2014). evaluation of the fermentative, antioxidant, and anti-inflammation properties of subsp. BF3 and subsp. BF7 isolated from intestines in Rausu, Japan. Journal of Functional Foods.11:269-277. DOI: 10.1093/jn/137.3.819S.
[5] I. R. Rajput, L. Y. Li, X. Xin, B. B. Wu. et al.(2013). Effect of and B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poultry Science.92(4):956-965. DOI: 10.1093/jn/137.3.819S.
[6] B. Corthésy. (2013). Multi-faceted functions of secretory IgA at mucosal surfaces. Frontiers in Immunology.4:185-196. DOI: 10.1093/jn/137.3.819S.
[7] M. V. Tejada-Simon, J. J. Pestka. (1999). Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. Journal of Food Protection.62(12):1435-1444. DOI: 10.1093/jn/137.3.819S.
[8] M. Llopis, M. Antolin, M. Carol, N. Borruel. et al.(2009). downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflammatory Bowel Diseases.15(2):275-283. DOI: 10.1093/jn/137.3.819S.
[9] J. Madrid, C. Villodre, L. Valera, J. Orengo. et al.(2013). Effect of crude glycerin on feed manufacturing, growth performance, plasma metabolites, and nutrient digestibility of growing-finishing pigs. Journal of Animal Science.91(8):3788-3795. DOI: 10.1093/jn/137.3.819S.
[10] R. H. Siggers, J. Siggers, M. Boye, T. Thymann. et al.(2008). Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. The Journal of Nutrition.138(8):1437-1444. DOI: 10.1093/jn/137.3.819S.
[11] M. F. Tosi. (2005). Innate immune responses to infection. Journal of Allergy and Clinical Immunology.116(2):241-249. DOI: 10.1093/jn/137.3.819S.
[12] M. F. Fernández, S. Boris, C. Barbés. (2005). Safety evaluation of subsp. UO 004, a probiotic bacterium. Research in Microbiology.156(2):154-160. DOI: 10.1093/jn/137.3.819S.
[13] M. Kawahara, M. Nemoto, T. Nakata, S. Kondo. et al.(2015). Anti-inflammatory properties of fermented soy milk with subsp. S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice. International Immunopharmacology.26(2):295-303. DOI: 10.1093/jn/137.3.819S.
[14] G. L. Czarnecki-Maulden. (2008). Effect of dietary modulation of intestinal microbiota on reproduction and early growth. Theriogenology.70(3):286-290. DOI: 10.1093/jn/137.3.819S.
[15] W. Ren, K. Wang, J. Yin, S. Chen. et al.(2016). Glutamine-induced secretion of intestinal secretory immunoglobulin A: a mechanistic perspective. Frontiers in Immunology.7(4):503-512. DOI: 10.1093/jn/137.3.819S.
[16] C. Liu, Q. Zhu, J. Chang, Q. Yin. et al.(2017). Effects of and on growth performance, immune function and gut microbiota of suckling piglets. Archives of Animal Nutrition.71(2):120-133. DOI: 10.1093/jn/137.3.819S.
[17] X. A. Zhan, M. Wang, Z. R. Xu, W. F. Li. et al.(2006). Effects of fluoride on hepatic antioxidant system and transcription of Cu/Zn SOD gene in young pigs. Journal of Trace Elements in Medicine and Biology.20(2):83-87. DOI: 10.1093/jn/137.3.819S.
[18] S. Gebert, E. Davis, T. Rehberger, C. V. Maxwell. et al.(2011). strain 1E1 administered to piglets through milk supplementation prior to weaning maintains intestinal integrity after the weaning event. Beneficial Microbes.2(1):35-45. DOI: 10.1093/jn/137.3.819S.
[19] H. S. Ejtahed, J. Mohtadi-Nia, A. Homayouni-Rad, M. Niafar. et al.(2012). Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition.28(5):539-543. DOI: 10.1093/jn/137.3.819S.
[20] T. Kullisaar, M. Zilmer, M. Mikelsaar, T. Vihalemm. et al.(2002). Two antioxidative lactobacilli strains as promising probiotics. International Journal of Food Microbiology.72(3):215-224. DOI: 10.1093/jn/137.3.819S.
[21] I. R. Rajput, W. F. Li, Y. L. Li, L. Jian. et al.(2013). Application of probiotic () to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of Shaoxing duck. Pakistan Veterinary Journal.33(1):69-72. DOI: 10.1093/jn/137.3.819S.
[22] C. Tsigos, G. P. Chrousos. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research.53(4):865-871. DOI: 10.1093/jn/137.3.819S.
[23] M. D. McDonald, C. M. Wood. (2004). The effect of chronic cortisol elevation on urea metabolism and excretion in the rainbow trout (). Journal of Comparative Physiology B.174(1):71-81. DOI: 10.1093/jn/137.3.819S.
[24] H. H. Musa, S. L. Wu, C. H. Zhu, H. I. Seri. et al.(2009). The potential benefits of probiotics in animal production and health. Journal of Animal and Veterinary Advances.8(2):313-321. DOI: 10.1093/jn/137.3.819S.
[25] Y. Wang, Y. Wu, Y. Wang, H. Xu. et al.(2017). Antioxidant properties of probiotic bacteria. Nutrients.9(5):521. DOI: 10.1093/jn/137.3.819S.
[26] Y. B. Shen, G. Voilqué, J. D. Kim, J. Odle. et al.(2012). Effects of increasing tryptophan intake on growth and physiological changes in nursery pigs. Journal of Animal Science.90(7):2264-2275. DOI: 10.1093/jn/137.3.819S.
[27] M. De Vrese, P. R. Marteau. (2007). Probiotics and prebiotics: effects on diarrhea. The Journal of Nutrition.137(3):803S-811S. DOI: 10.1093/jn/137.3.819S.
[28] M. Wang, S. Ahrné, B. Jeppsson, G. Molin. et al.(2005). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiology Ecology.54(2):219-231. DOI: 10.1093/jn/137.3.819S.
[29] S. Picchietti, A. M. Fausto, E. Randelli, O. Carnevali. et al.(2009). Early treatment with strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval (L.). Fish Shellfish Immunol.26(3):368-376. DOI: 10.1093/jn/137.3.819S.
[30] B. Sheil, F. Shanahan, L. O'Mahony. (2007). Probiotic effects on inflammatory bowel disease. The Journal of Nutrition.137(3):819S-824S. DOI: 10.1093/jn/137.3.819S.
[31] L. Weifen, Z. Xiaoping, S. Wenhui, D. Bin. et al.(2012). Effects of preparations on immunity and antioxidant activities in grass carp (). Fish Physiology and Biochemistry.38(6):1585-1592. DOI: 10.1093/jn/137.3.819S.
[32] H. C. Lin, B. H. Su, A. C. Chen, T. W. Lin. et al.(2006). Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics.115(1):1-4. DOI: 10.1093/jn/137.3.819S.
[33] P. Bosi, P. Trevisi. (2010). New topics and limits related to the use of beneficial microbes in pig feeding. Beneficial Microbes.1(4):447-454. DOI: 10.1093/jn/137.3.819S.
[34] M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic. et al.(2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions.160(1):1-40. DOI: 10.1093/jn/137.3.819S.
[35] H. Yi, Y. L. Li, H. Qin, Z. W. Cui. et al.(2012). Effect of orally administered EF1 on intestinal cytokines and chemokines production of suckling piglets. Pakistan Veterinary Journal.32(1):81-84. DOI: 10.1093/jn/137.3.819S.
[36] M. Schlee, J. Harder, B. Köten, E. F. Stange. et al.(2008). Probiotic lactobacilli and VSL#3 induce enterocyte -defensin 2. Clinical & Experimental Immunology.151(3):528-535. DOI: 10.1093/jn/137.3.819S.
[37] G. Zoumpopoulou, B. Foligne, K. Christodoulou, C. Grangette. et al.(2008). ACA-DC 179 displays probiotic potential and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and infection in murine models. International Journal of Food Microbiology.121(1):18-26. DOI: 10.1093/jn/137.3.819S.
[38] K. Büsing, A. Zeyner. (2015). Effects of oral strain DSM 10663 NCIMB 10415 on diarrhoea patterns and performance of sucking piglets. Beneficial Microbes.6(1):41-44. DOI: 10.1093/jn/137.3.819S.
[39] J. L. Duan, S. P. He, G. Yang, J. Yin. et al.(2014). Effect of on jejunum innate immune-related gene expression in mice. Journal of Animal and Veterinary Advances.13:989-997. DOI: 10.1093/jn/137.3.819S.
[40] H. H. Smits, A. Engering, D. van der Kleij, E. C. de Jong. et al.(2005). Selective probiotic bacteria induce IL-10-producing regulatory T cells by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. The Journal of Allergy and Clinical Immunology.115(6):1260-1267. DOI: 10.1093/jn/137.3.819S.
[41] M. Mohamadzadeh, S. Olson, W. V. Kalina, G. Ruthel. et al.(2005). Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proceedings of the National Academy of Sciences of the United States of America.102(8):2880-2885. DOI: 10.1093/jn/137.3.819S.
[42] F. N. Li, Y. H. Li, Y. L. Tang, B. B. Lin. et al.(2014). Protective effect of myokine IL-15 against HO-mediated oxidative stress in skeletal muscle cells. Molecular Biology Reports.41(11):7715-7722. DOI: 10.1093/jn/137.3.819S.
[43] Z. Yu, W. Zhang, B. C. Kone. (2002). Histone deacetylases augment cytokine induction of the iNOS gene. Journal of the American Society of Nephrology.13(8):2009-2017. DOI: 10.1093/jn/137.3.819S.
[44] T. Finkel, N. J. Holbrook. (2000). Oxidants, oxidative stress and the biology of ageing. Nature.408(6809):239-247. DOI: 10.1093/jn/137.3.819S.
[45] A. M. Waguespack, S. Powell, M. L. Roux, E. D. Frugé. et al.(2011). Technical note: effect of determining baseline plasma urea nitrogen concentrations on subsequent posttreatment plasma urea nitrogen concentrations in 20-to 50-kilogram pigs. Journal of Animal Science.89(12):4116-4119. DOI: 10.1093/jn/137.3.819S.
[46] A. G. Pirinccioglu, D. Gökalp, M. Pirinccioglu, G. Kizil. et al.(2010). Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clinical Biochemistry.43(15):1220-1224. DOI: 10.1093/jn/137.3.819S.
[47] Z. D. A. Vand, M. Alishahi, M. R. Tabande. (2014). Effects of different levels of as probiotic on growth performance and digestive enzymes activity of. International Journal of Biosciences.4(7):106-116. DOI: 10.1093/jn/137.3.819S.
[48] A. G. Georgakilas. (2012). Oxidative stress, DNA damage and repair in carcinogenesis: have we established a connection?. Cancer Letters.327(1-2):3-4. DOI: 10.1093/jn/137.3.819S.
文献评价指标
浏览 72次
下载全文 14次
评分次数 0次
用户评分 0.0分
分享 0次