首页 » 文章 » 文章详细信息
Journal of Chemistry Volume 2019 ,2019-03-03
Characterization and Potential Antidiabetic Activity of Proanthocyanidins from the Barks of Acacia mangium and Larix gmelinii
Research Article
X. Chen 1 J. Xiong 2 Q. He 1 F. Wang 1
Show affiliations
DOI:10.1155/2019/4793047
Received 2018-10-19, accepted for publication 2019-01-22, Published 2019-01-22
PDF
摘要

Proanthocyanidins in ethanol extracts from the barks of Acacia mangium and Larix gmelinii were analyzed by gel permeation chromatography, MALDI-TOF/TOF MS, and HPLC/MS. The inhibitory effects of proanthocyanidins and acid-catalyzed hydrolysis of proanthocyanidins against carbolytic enzymes were also tested. A significant relationship between carbolytic enzymes inhibition and degree of polymerization was established, showing that the degree of polymerization is a major contributor to the biological activity of the proanthocyanidins from both types of woody plant bark. The results indicate that proanthocyanidins from the barks of A. mangium and L. gmelinii have potential antidiabetic properties.

授权许可

Copyright © 2019 X. Chen et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

F. Wang.College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, China, njfu.edu.cn.hgwf@njfu.edu.cn

推荐引用方式

X. Chen,J. Xiong,Q. He,F. Wang. Characterization and Potential Antidiabetic Activity of Proanthocyanidins from the Barks of Acacia mangium and Larix gmelinii. Journal of Chemistry ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. Lordan, T. J. Smyth, A. Soler-Vila, C. Stanton. et al.(2013). The -amylase and -glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry.141(3):2170-2176. DOI: 10.1016/j.jff.2016.10.004.
[2] S. Damiano, M. Forino, A. De, L. A. Vitali. et al.(2017). Antioxidant and antibiofilm activities of secondary metabolites from leaves used for infusion preparation. Food Chemistry.230:24-29. DOI: 10.1016/j.jff.2016.10.004.
[3] A. P. Neilson, S. F. O'Keefe, B. W. Bolling. (2015). High-molecular-weight proanthocyanidins in foods: overcoming analytical challenges in pursuit of novel dietary bioactive components. Annual Review of Food Science and Technology.7(1):43-64. DOI: 10.1016/j.jff.2016.10.004.
[4] Y. Y. Ma, D. G. Zhao, A. Y. Zhou, Y. Zhang. et al.(2015). -Glucosidase inhibition and antihyperglycemic activity of phenolics from the flowers of edgeworthia gardneri. Journal of Agricultural and Food Chemistry.63(37):8162-8169. DOI: 10.1016/j.jff.2016.10.004.
[5] Y. B. Hoong, A. Pizzi, P. M. Tahir, H. Pasch. et al.(2010). Characterization of Acacia mangium polyflavonoid tannins by MALDI-TOF mass spectrometry and CP-MAS C NMR. European Polymer Journal.46(6):1268-1277. DOI: 10.1016/j.jff.2016.10.004.
[6] X. Chen, J. Xiong, L. He. (2018). Effects of in vitro digestion on the content and biological activity of polyphenols from bark. Molecules.23(7):1804. DOI: 10.1016/j.jff.2016.10.004.
[7] J. Xiong, M. H. Graceb, D. Esposito, F. Wang. et al.(2016). Phytochemical characterization and anti-inflammatory properties of leaves. Natural Product Communications.11(5):649-653. DOI: 10.1016/j.jff.2016.10.004.
[8] X. Chen, J. Xiong, S. Huang. (2018). Analytical profiling of proanthocyanidins from bark and in vitro assessment of antioxidant and antidiabetic potential. Molecules.23(11):2891. DOI: 10.1016/j.jff.2016.10.004.
[9] P. B. Venter, N. D. Senekal, G. Kemp. (2012). Analysis of commercial proanthocyanidins. Part 3: the chemical composition of wattle () bark extract. Phytochemistry.83(11):153-167. DOI: 10.1016/j.jff.2016.10.004.
[10] M. Rubilar, C. Jara, Y. Poo. (2011). Extracts of Maqui () and Murta (): sources of antioxidant compounds and -Glucosidase/-Amylase inhibitors. Journal of Agricultural and Food Chemistry.59(5):1630-1637. DOI: 10.1016/j.jff.2016.10.004.
[11] Q. Li, J. Chen, T. Li. (2015). Separation and characterization of polyphenolics from underutilized byproducts of fruit production ( peels): inhibitory activity of proanthocyanidins against glycolysis enzymes. Food and Function.6(12):3693-3701. DOI: 10.1016/j.jff.2016.10.004.
[12] J. Pérez-Jiménez, J. L. Torres. (2012). Analysis of proanthocyanidins in almond blanch water by HPLC–ESI–QqQ–MS/MS and MALDI–TOF/TOF MS. Food Research International.49(2):798-806. DOI: 10.1016/j.jff.2016.10.004.
[13] Y. Zhang, X. Zhou, W. Tao. (2016). Antioxidant and antiproliferative activities of proanthocyanidins from Chinese bayberry (.) leaves. Journal of Functional Foods.27:645-654. DOI: 10.1016/j.jff.2016.10.004.
[14] J. A. Kennedy, G. P. Jones. (2001). Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. Journal of Agricultural and Food Chemistry.49(4):1740-1746. DOI: 10.1016/j.jff.2016.10.004.
[15] R. Kusano, S. Ogawa, Y. Matsuo, T. Tanaka. et al.(2011). -Amylase and lipase inhibitory activity and structural characterization of bark proanthocyanidins. Journal of Natural Products.74(2):119-128. DOI: 10.1016/j.jff.2016.10.004.
[16] S. Luo, X. Zhang, X. Zhang, L. Zhang. et al.(2014). Extraction, identification and antioxidant activity of proanthocyanidins from Bark. Natural Product Research.28(14):1116-1120. DOI: 10.1016/j.jff.2016.10.004.
[17] X. Shen, Y. Wang, F. Wang. (2010). Characterisation and biological activities of proanthocyanidins from the barks of and. Natural Product Research.24(6):590-598. DOI: 10.1016/j.jff.2016.10.004.
[18] Y. Zhang, A. I. C. Wong, J. E. Wu, N. B. A. Karim. et al.(2016). Lepisanthes alata () leaves are potent inhibitors of starch hydrolases due to proanthocyanidins with high degree of polymerization. Journal of Functional Foods.25:568-578. DOI: 10.1016/j.jff.2016.10.004.
[19] J. Xiong, M. H. Grace, D. Esposito, S. Komarnytsky. et al.(2017). Polyphenols isolated from bark with anti-inflammatory and carbolytic enzyme inhibitory activities. Chinese Journal of Natural Medicines.15(11):816-824. DOI: 10.1016/j.jff.2016.10.004.
[20] C. Manach, A. Scalbert, C. Morand, C. Rémésy. et al.(2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition.79(5):727-747. DOI: 10.1016/j.jff.2016.10.004.
[21] L. Zhang, J. Chen, Y. Wang, D. Wu. et al.(2010). Phenolic extracts from bark and their antioxidant activities. Molecules.15(5):3567-3577. DOI: 10.1016/j.jff.2016.10.004.
[22] J. Serrano, R. Puupponenpimiä, A. Dauer, A. M. Aura. et al.(2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition and Food Research.53(S2):S310-S329. DOI: 10.1016/j.jff.2016.10.004.
[23] S. M. Lipson, G. Karalis, L. Karthikeyan. (2017). Mechanism of anti-rotavirus synergistic activity by epigallocatechin gallate and a proanthocyanidin-containing nutraceutical. Food and Environmental Virology.9(4):434-443. DOI: 10.1016/j.jff.2016.10.004.
文献评价指标
浏览 48次
下载全文 7次
评分次数 0次
用户评分 0.0分
分享 0次