首页 » 文章 » 文章详细信息
Journal of Analytical Methods in Chemistry Volume 2019 ,2019-03-06
Qualitative and Quantitative Analysis of the Product and By-Products from Transesterification between Phenol and Dimethyl Carbonate
Research Article
Tao Liu 1 , 2 , 3 Jing Hu 1 Li Yong 3 Gang Zhang 1 , 2 Yi Zhang 1 , 2 Tong Chen 1 Gongying Wang 1
Show affiliations
DOI:10.1155/2019/7632520
Received 2019-01-09, accepted for publication 2019-02-18, Published 2019-02-18
PDF
摘要

By-products (phenyl salicylate, phenyl 4-hydroxybenzoate, and xanthone) from transesterification between phenol and dimethyl carbonate (DMC) were qualitatively analyzed by gas chromatography-mass spectrometry, and a gas chromatographic method with directed injection for simultaneous quantitative analysis of the product (DPC) and by-products of the transesterification has been established. Based on the results of qualitative and quantitative analyses, the mechanism of the by-products generation was preliminarily deduced. The sample for quantitative analysis was directly diluted in acetone, and related compounds were separated on an HP-5 capillary column and detected by a hydrogen flame ionization detector (FID). The product and by-products were well separated, the correlation coefficients (r) within the concentration range of 1.0 μg/mL–100 μg/mL were ≥0.9997, the relative standard deviations were between 0.5% and 4.4%, spiked recoveries were between 91.5% and 105.6%, and detection limits were between 0.11 and 0.18 μg/mL. The established method is simple, rapid, accurate, sensitive, and highly specific. It is suitable for simultaneous qualitative and quantitative analyses of the product and by-products of transesterification between phenol and DMC.

授权许可

Copyright © 2019 Tao Liu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Tong Chen.Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China, cas.cn.chentongw@cioc.ac.cn

推荐引用方式

Tao Liu,Jing Hu,Li Yong,Gang Zhang,Yi Zhang,Tong Chen,Gongying Wang. Qualitative and Quantitative Analysis of the Product and By-Products from Transesterification between Phenol and Dimethyl Carbonate. Journal of Analytical Methods in Chemistry ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] H. Zhang, H.-B. Liu, J.-M. Yue. (2014). Organic carbonates from natural sources. Chemical Reviews.114(1):883-898. DOI: 10.1080/01614940.2016.1263088.
[2] Y. Qu, H. Yang, S. Wang, T. Chen. et al.(2017). High selectivity to diphenyl carbonate synthesized via transesterification between dimethyl carbonate and phenol with C60-doped TiO. Chemical Research in Chinese Universities.33(5):804-810. DOI: 10.1080/01614940.2016.1263088.
[3] Y. Gao, Z. Li, K. Su, B. Cheng. et al.(2016). Excellent performance of TiO(B) nanotubes in selective transesterification of DMC with phenol derivatives. Chemical Engineering Journal.301:12-18. DOI: 10.1080/01614940.2016.1263088.
[4] J. Gong, X. Ma, S. Wang. (2007). Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Applied Catalysis A: General.316(1):1-21. DOI: 10.1080/01614940.2016.1263088.
[5] A. Xing, M. Zhang. (2005). Qualitative and quantitative determination of the products synthesized by the transesterification of dimethyl carbonate with phenol. Chromatographia.61(7-8):423-426. DOI: 10.1080/01614940.2016.1263088.
[6] D. Kyriacos. (2017). Brydson’s Plastics Materials, Polycarbonates. DOI: 10.1080/01614940.2016.1263088.
[7] S. Wang, R. Tang, Y. Zhang, T. Chen. et al.(2015). 12-molybdophosphoric acid supported on titania: a highly active and selective heterogeneous catalyst for the transesterification of dimethyl carbonate and phenolfication of dimethyl carbonate and phenol. Chemical Engineering Science.138:93-98. DOI: 10.1080/01614940.2016.1263088.
[8] S. Wang, T. Chen, G. Wang, C. Cui. et al.(2017). Influence of coordination groups on the catalytic performances of organo-titanium compounds for disproportionation of methyl phenyl carbonate to synthesize diphenyl carbonate. Applied Catalysis A: General.540:1-6. DOI: 10.1080/01614940.2016.1263088.
[9] H. Kim, K.-I. Min, K. Inoue, D. J. Im. et al.(2016). Submillisecond organic synthesis: outpacing fries rearrangement through microfluidic rapid mixing. Science.352(6286):691-694. DOI: 10.1080/01614940.2016.1263088.
[10] S. L. Wang, Y. Z. Zhang, Y. Chen, R. Z. Tang. et al.(2014). Organotin compounds as catalysts for disproportionation of methyl phenyl carbonate to diphenyl carbonate. Chemical Journal of Chinese Universities.35(10):2177-2181. DOI: 10.1080/01614940.2016.1263088.
[11] H. Kim, K. Inoue, J.-i. Yoshida. (2017). Harnessing [1,4], [1,5], and [1,6] anionic fries-type rearrangements by reaction-time control in flow. Angewandte Chemie International Edition.56(27):7863-7866. DOI: 10.1080/01614940.2016.1263088.
[12] T. Laue, A. Plagens. (2005). Named Organic Reactions: Fries Rearrangement. DOI: 10.1080/01614940.2016.1263088.
[13] Y. Zhang, S. Wang, Z. Xiao, T. Chen. et al.(2016). Mesoporous silica-anchored organotin as heterogeneous catalyst for the transesterification of dimethyl carbonate with phenolfication of dimethyl carbonate with phenol. Research on Chemical Intermediates.42(9):7213-7222. DOI: 10.1080/01614940.2016.1263088.
[14] H. Yoshinori, K. Hideki, H. Miehio. (1997). Catalyst for manufacturation of diaryl Carbonate. . DOI: 10.1080/01614940.2016.1263088.
[15] M. Ali, H. Rahaman, S. K. Pal, N. Kar. et al.(2015). Submicron ZnO raspberries as effective catalysts for fries rearrangement. RSC Advances.5(52):41780-41785. DOI: 10.1080/01614940.2016.1263088.
[16] X. Jing, H. R. Liu, X. Q. Dong, A. L. Geng. et al.(1999). Analysis of trace impurities in diphenyl carbonate by HPLC. Chinese Journal of Analytical Chemistry.27(3):369. DOI: 10.1080/01614940.2016.1263088.
[17] J. Beranek, J. Hlavackova. (1978). Preparation of diaryl carbonates. Nucleic Acid Chemistry.2:999-1001. DOI: 10.1080/01614940.2016.1263088.
[18] Y. Qu, S. Wang, T. Chen, G. Wang. et al.(2017). Zn-promoted synthesis of diphenyl carbonate via transesterification over Ti-Zn double oxide catalyst. Research on Chemical Intermediates.43(5):2725-2735. DOI: 10.1080/01614940.2016.1263088.
[19] Q. Wang, C. Li, M. Guo, S. Luo. et al.(2015). Transesterification of dimethyl carbonate with phenol to diphenyl carbonate over hexagonal Mg(OH) nanoflakes. Inorganic Chemistry Frontiers.2(1):47-54. DOI: 10.1080/01614940.2016.1263088.
[20] S. Fukuoka, I. Fukawa, M. Tojo. (2010). A novel non-phosgene process for polycarbonate production from CO: green and sustainable chemistry in practice. Catalysis Surveys from Asia.14(3-4):146-163. DOI: 10.1080/01614940.2016.1263088.
[21] S. Huang, B. Yan, S. Wang, X. Ma. et al.(2015). Recent advances in dialkyl carbonates synthesis and applications. Chemical Society Reviews.44(10):3079-3116. DOI: 10.1080/01614940.2016.1263088.
[22] K. Uchiyama, Y. Koga. (2016). Manufacture of diphenyl carbonate used in manufacture of polycarbonate, involves carrying out decarbonylation reaction of diphenyl oxalate in presence of catalyst at specified absolute pressure. . DOI: 10.1080/01614940.2016.1263088.
[23] C. Yin, J. Zhou, Q. Chen, J. Han. et al.(2016). Deactivation causes of supported palladium catalysts for the oxidative carbonylation of phenol. Journal of Molecular Catalysis A: Chemical.424:377-383. DOI: 10.1080/01614940.2016.1263088.
[24] Y. S. Eo, H.-W. Rhee, S. Shin. (2016). Catalyst screening for the melt polymerization of isosorbide-based polycarbonate. Journal of Industrial and Engineering Chemistry.37:42-46. DOI: 10.1080/01614940.2016.1263088.
[25] Y. Wang, J. Yao, Y. Zeng, G. Y. Wang. et al.(2005). Mechanism study of di--butyltin oxide catalyzed transesterification of dimethyl carbonate with phenol. Acta Chimica Sinica.63(7):603-611. DOI: 10.1080/01614940.2016.1263088.
[26] K. Shukla, V. C. Srivastava. (2017). Synthesis of organic carbonates from alcoholysis of urea: a review. Catalysis Reviews.59(1):1-43. DOI: 10.1080/01614940.2016.1263088.
[27] B. Li, R. Tang, T. Chen, G. Wang. et al.(2012). Transesterification of phenol and dimethyl carbonate catalyzed by titanium oxide acetylacetonate catalyst. Chinese Journal of Catalysis.33(4–6):601-604. DOI: 10.1080/01614940.2016.1263088.
[28] S. Wang, C. Li, Z. Xiao, T. Chen. et al.(2016). Highly efficient and stable PbO-ZrO catalyst for the disproportionation of methyl phenyl carbonate to synthesize diphenyl carbonate. Journal of Molecular Catalysis A: Chemical.420:26-33. DOI: 10.1080/01614940.2016.1263088.
[29] M. Ghaffarzadeh, M. Ahmadi. (2014). Catalytic application of fluorous silica gel in fries rearrangement. Journal of Fluorine Chemistry.160:77-81. DOI: 10.1080/01614940.2016.1263088.
[30] Z. Xiao, H. Yang, H. Zhang, T. Chen. et al.(2018). Transesterification of dimethyl carbonate and phenol to diphenyl carbonate with the bismuth compounds. Chemical Papers.72(9):2347-2352. DOI: 10.1080/01614940.2016.1263088.
[31] M. H. Zheng, Y. Liu, J. Zhao, C. J. Wang. et al.(2008). Progress in study of fries rearrangement reaction catalysts. Chemical Industry and Engineering Progress.27(1):78-82. DOI: 10.1080/01614940.2016.1263088.
[32] H. Yang, Z. Xiao, Y. Qu, T. Chen. et al.(2018). The role of RGO in TiO-RGO composites for the transesterification of dimethyl carbonate with phenol to diphenyl carbonatefication of dimethyl carbonate with phenol to diphenyl carbonate. Research on Chemical Intermediates.44(2):799-812. DOI: 10.1080/01614940.2016.1263088.
[33] B. D. A. D. Daoudy, M. A. Al-Khayat, F. Karabet, M. A. Al-Mardini. et al.(2018). A robust static headspace GC-FID method to detect and quantify formaldehyde impurity in pharmaceutical excipients. Journal of Analytical Methods in Chemistry.2018-8. DOI: 10.1080/01614940.2016.1263088.
[34] R. Kanega, H. Ogihara, I. Yamanaka. (2016). Electrosynthesis of diphenyl carbonate by homogeneous Pd electrocatalysts using Au nanoparticles on graphene as efficient anodes. Catalysis Science & Technology.6(15):6002-6010. DOI: 10.1080/01614940.2016.1263088.
[35] Y. Liu, J. Liu. (2013). Progress in the catalytic synthesis of diphenyl carbonate via non-phosgene routes. Chemical Industry and Engineering Progress.32(11):2614-2620. DOI: 10.1080/01614940.2016.1263088.
[36] A. H. Xing, M. Q. Zhang, Z. M. He. (2005). The quantitative analysis of reactive distillation products from transesterification of phenol with dmiethyl carbonate. Chinese Journal of Analytical Chemistry.33(8):1147-1150. DOI: 10.1080/01614940.2016.1263088.
文献评价指标
浏览 160次
下载全文 29次
评分次数 0次
用户评分 0.0分
分享 0次