首页 » 文章 » 文章详细信息
International Journal of Electrochemistry Volume 2019 ,2019-03-03
The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium
Research Article
Demet Özkır 1
Show affiliations
Received 2018-12-08, accepted for publication 2019-01-17, Published 2019-01-17

In this study, the relevance of a food dye, namely, Fast Green-FCF (FG-FCF), was surveyed as a new inhibitor for mild steel in HCl solution. This effect was specified by electrochemical impedance spectroscopy (EIS), one of the most widely used measurement techniques. As a result of the increment of the inhibitor concentration, it was seen that the values ​​of polarization resistance increased and covered the metal surface of FG-FCF like a blanket. Tests endorse that the FG-FCF is chemically adsorbed on mild steel surface, according to the Langmuir isotherm. With surface characteristic analyses, such as field emission scanning electron microscope (FESEM) and atomic force microscope (AFM), it was further determined that the metal surface in HCl of FG-FCF was protected. By applying the hydrogen gas evolution technique, FG-FCF has been proven to provide the lowest surface area with all inhibited solutions from the blank due to its strong adsorption to the metal surface. Finally, it has been clarified that FG-FCF can be practically used as a good corrosion inhibitor for mild steel with the supported results.


Copyright © 2019 Demet Özkır. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Demet Özkır.Niğde Ömer Halisdemir University, Department of Chemistry, Niğde 51200, Turkey, ohu.edu.tr.dozkir@ohu.edu.tr


Demet Özkır. The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium. International Journal of Electrochemistry ,Vol.2019(2019)



[1] E. E. Ebenso, E. E. Oguzie. (2005). Corrosion inhibition of mild steel in acidic media by some organic dyes. Materials Letters.59(17):2163-2165. DOI: 10.1016/j.corsci.2008.09.009.
[2] D. Özkir, K. Kayakirilmaz, E. Bayol, A. A. Gürten. et al.(2012). The inhibition effect of Azure A on mild steel in 1M HCl. A complete study: adsorption, temperature, duration and quantum chemical aspects. Corrosion Science.56:143-152. DOI: 10.1016/j.corsci.2008.09.009.
[3] C. Lei, X. Zhu, B. Zhu, C. Jiang. et al.(2017). Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. Journal of Hazardous Materials.321:801-811. DOI: 10.1016/j.corsci.2008.09.009.
[4] D. Özkir, E. Bayol. (2011). Inhibition efficiency of benzidine for mild steel in acidic media. Protection of Metals and Physical Chemistry of Surfaces.47(4):517-527. DOI: 10.1016/j.corsci.2008.09.009.
[5] R. Solmaz. (2014). Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-Dimethylaminobenzylidene)rhodanine. Corrosion Science.79:169-176. DOI: 10.1016/j.corsci.2008.09.009.
[6] T. N. J. I. Edison, R. Atchudan, A. Pugazhendhi, Y. R. Lee. et al.(2018). Corrosion inhibition performance of spermidine on mild steel in acid media. Journal of Molecular Liquids.264:483-489. DOI: 10.1016/j.corsci.2008.09.009.
[7] S. Pareek, D. Jain, S. Hussain, A. Biswas. et al.(2019). A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt.
[8] NaCl solution by eco-friendly Imidazopyrimidine Dye: experimental and theoretical approach. Chemical Engineering Journal.358:725-742. DOI: 10.1016/j.corsci.2008.09.009.
[9] H. Keleş, M. Keleş. (2018). Protection effect of 2-(phenylthio)phenyl)-1-(2- (trifluoromethyl)phenyl) methanimine on Low carbon steel at open circuit and different potentials. Protection of Metals and Physical Chemistry of Surfaces.54(3):513-525. DOI: 10.1016/j.corsci.2008.09.009.
[10] Q. Zhang, B. Hou, N. Xu, H. Liu. et al.(2018). Two novel thiadiazole derivatives as highly efficient inhibitors for the corrosion of mild steel in the CO2-saturated oilfield produced water. Journal of the Taiwan Institute of Chemical Engineers. DOI: 10.1016/j.corsci.2008.09.009.
[11] E. Li, J. Wu, D. Zhang, Y. Sun. et al.(2018). D-phenylalanine inhibits the corrosion of Q235 carbon steel caused by Desulfovibrio sp.. International Biodeterioration & Biodegradation.127:178-184. DOI: 10.1016/j.corsci.2008.09.009.
[12] R. A. Prabhu, T. V. Venkatesha, A. V. Shanbhag, G. M. Kulkarni. et al.(2008). Inhibition effects of some Schiff's bases on the corrosion of mild steel in hydrochloric acid solution. Corrosion Science.50(12):3356-3362. DOI: 10.1016/j.corsci.2008.09.009.
[13] C. Verma, E. E. Ebenso, M. A. Quraishi. (2017). Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. Journal of Molecular Liquids.233:403-414. DOI: 10.1016/j.corsci.2008.09.009.
[14] N. P. Shetti, D. S. Nayak, S. J. Malode. (2018). Electrochemical behavior of azo food dye at nanoclay modified carbon electrode-a nanomolar determination. Vacuum.155:524-530. DOI: 10.1016/j.corsci.2008.09.009.
[15] B. Dogru Mert, M. E. Mert, G. Kardas, B. Yazici. et al.(2016). The experimental and quantum chemical investigation for two isomeric compounds as aminopyrazine and 2-amino-pyrimidine against mild steel corrosion. Anti-Corrosion Methods and Materials.63(5):369-376. DOI: 10.1016/j.corsci.2008.09.009.
[16] . DOI: 10.1016/j.corsci.2008.09.009.
[17] M. Faustin, A. Maciuk, P. Salvin, C. Roos. et al.(2015). Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies. Corrosion Science.92:287-300. DOI: 10.1016/j.corsci.2008.09.009.
[18] E. Guerra, G. Alvarez-Rivera, M. Llompart, C. Garcia-Jares. et al.(2018). Simultaneous determination of preservatives and synthetic dyes in cosmetics by single-step vortex extraction and clean-up followed by liquid chromatography coupled to tandem mass spectrometry. Talanta.188:251-258. DOI: 10.1016/j.corsci.2008.09.009.
[19] M. Prajila, A. Joseph. (2017). Inhibition of mild steel corrosion in hydrochloric using three different 1,2,4-triazole Schiff's bases: A comparative study of electrochemical, theoretical and spectroscopic results. Journal of Molecular Liquids.241:1-8. DOI: 10.1016/j.corsci.2008.09.009.
[20] T. I. Tikhomirova, G. R. Ramazanova, V. V. Apyari. (2018). Effect of nature and structure of synthetic anionic food dyes on their sorption onto different sorbents: Peculiarities and prospects. Microchemical Journal.143:305-311. DOI: 10.1016/j.corsci.2008.09.009.
[21] D. S. Moreno, H. Celedonio, R. L. Mangan, J. L. Zavala. et al.(2001). Field evaluation of a phototoxic dye, phloxine B, against three species of fruit flies (Diptera: Tephritidae). Journal of Economic Entomology.94(6):1419-1427. DOI: 10.1016/j.corsci.2008.09.009.
[22] V. S. Sastri. (2011). Green Corrosion Inhibitors: Theory and Practice:257-303. DOI: 10.1016/j.corsci.2008.09.009.
[23] A. Singh, Y. Lin, W. Liu, S. Yu. et al.(2014). Plant derived cationic dye as an effective corrosion inhibitor for 7075 aluminum alloy in 3.5
[24] NaCl solution. Journal of Industrial and Engineering Chemistry.20(6):4276-4285. DOI: 10.1016/j.corsci.2008.09.009.
[25] R. Jia, T. Unsal, D. Xu, Y. Lekbach. et al.Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation.137:42-58. DOI: 10.1016/j.corsci.2008.09.009.
[26] R. Yıldız. (2018). Adsorption and inhibition effect of 2,4-diamino-6-hydroxypyrimidine for mild steel corrosion in HCl medium: experimental and theoretical investigation. Ionics.24:1-12. DOI: 10.1016/j.corsci.2008.09.009.
[27] A. Espinoza-Vázquez, G. E. Negrón-Silva, R. González-Olvera, D. Angeles-Beltrán. et al.(2014). Mild steel corrosion inhibition in HCl by di-alkyl and di-1,2,3-triazole derivatives of uracil and thymine. Materials Chemistry and Physics.145(3):407-417. DOI: 10.1016/j.corsci.2008.09.009.
[28] Y. I. Kuznetsov, A. D. Mercer, J. G. Thomas. (1996). Organic Corrosion Inhibitors for Cooling Systems:225-246. DOI: 10.1016/j.corsci.2008.09.009.
[29] J. A. Van Hooft. (2002). Fast Green FCF (Food Green 3) inhibits synaptic activity in rat hippocampal interneurons. Neuroscience Letters.318(3):163-165. DOI: 10.1016/j.corsci.2008.09.009.
[30] E. Pensini, R. van Lier, F. Cuoq, W. Hater. et al.(2018). Enhanced corrosion resistance of metal surfaces by film forming amines: A comparative study between cyclohexanamine and 2-(diethylamino)ethanolbased formulations. Water Resources and Industry.20:93-106. DOI: 10.1016/j.corsci.2008.09.009.
[31] K. Shanmuga priya, B. Prathibha, V. Vasudha, H. Nagaswarupa. et al.(2018). Spathodea campanulata as a corrosion inhibitor for mild steel in 1N H2SO4 media. Materials Today: Proceedings.5(10):22595-22604. DOI: 10.1016/j.corsci.2008.09.009.
[32] D. Özkir. (2018). Yumuşak çeliğin korozyon inhibitörlerine kloroanilinden sentezlenen yeni bir örnek: 2-[(2,5-diklorofenilimino)metil]fenol. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi.7(2):993-1003. DOI: 10.1016/j.corsci.2008.09.009.
[33] A. Döner, E. A. Şahin, G. Kardaş, O. Serindaĝ. et al.(2013). Investigation of corrosion inhibition effect of 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-thiazolidin-4-one on corrosion of mild steel in the acidic medium. Corrosion Science.66:278-284. DOI: 10.1016/j.corsci.2008.09.009.
[34] J. Pooralhossini, M. Ghaedi, M. A. Zanjanchi, A. Asfaram. et al.(2017). Ultrasonically assisted removal of Congo Red, Phloxine B and Fast green FCF in ternary mixture using novel nanocomposite following their simultaneous analysis by derivative spectrophotometry. Ultrasonics Sonochemistry.37:452-463. DOI: 10.1016/j.corsci.2008.09.009.
[35] S. Tsuji, K. Yoshii, Y. Tonogai. (2006). Identification of isomers and subsidiary colors in commercial Fast Green FCF (FD&C Green No. 3, Food Green No. 3) by liquid chromatography-mass spectrometry and comparison between amounts of the subsidiary colors by high-performance liquid chromatography and thin-layer chromatography- spectrophotometry. Journal of Chromatography A.1101(1-2):214-221. DOI: 10.1016/j.corsci.2008.09.009.
[36] E. S. El Tamany, S. Elsaeed, H. Ashour, E. Zaki. et al.(2018). Novel acrylamide ionic liquids as anti-corrosion for X-65 steel dissolution in acid medium: Adsorption, hydrogen evolution and mechanism. Journal of Molecular Structure.1168:106-114. DOI: 10.1016/j.corsci.2008.09.009.
[37] H. M. Abd El-Lateef, A. M. Abu-Dief, L. H. Abdel-Rahman, E. C. Sañudo. et al.(2015). Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. Journal of Electroanalytical Chemistry.743:120-133. DOI: 10.1016/j.corsci.2008.09.009.
[38] I. Abdulazeez, A. Zeino, C. W. Kee, A. A. Al-Saadi. et al.(2019). Mechanistic studies of the influence of halogen substituents on the corrosion inhibitive efficiency of selected imidazole molecules: A synergistic computational and experimental approach. Applied Surface Science.471:494-505. DOI: 10.1016/j.corsci.2008.09.009.
[39] M. Murmu, S. K. Saha, N. C. Murmu, P. Banerjee. et al.(2019). Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science.146:134-151. DOI: 10.1016/j.corsci.2008.09.009.
[40] A. El Nemr, A. A. Moneer, A. Khaled, A. El Sikaily. et al.(2014). Modeling of synergistic halide additives' effect on the corrosion of aluminum in basic solution containing dye. Materials Chemistry and Physics.144(1-2):139-154. DOI: 10.1016/j.corsci.2008.09.009.
[41] C. B P, P. Rao. (2018). Environmentally benign green inhibitor to attenuate acid corrosion of 6061Aluminum-15
[42] (v) SiC(P) composite. Journal of Industrial and Engineering Chemistry.58:357-368. DOI: 10.1016/j.corsci.2008.09.009.
[43] A. A. El-Meligi. (2011). Hydrogen production by aluminum corrosion in hydrochloric acid and using inhibitors to control hydrogen evolution. International Journal of Hydrogen Energy.36(17):10600-10607. DOI: 10.1016/j.corsci.2008.09.009.
[44] Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada. et al.(2009). A novel azo dye, 8-quinolinol-5-azoantipyrine as corrosion inhibitor for mild steel in acidic media. Desalination.237(1-3):175-189. DOI: 10.1016/j.corsci.2008.09.009.
[45] I. M. Baghni, S. B. Lyon, B. Ding. (2004). The effect of strontium and chromate ions on the inhibition of zinc. Surface and Coatings Technology.185(2-3):194-198. DOI: 10.1016/j.corsci.2008.09.009.
[46] M. Abd El-raouf, O. E. El-Azabawy, R. E. El-Azabawy. (2015). Investigation of adsorption and inhibitive effect of acid red GRE (183) dye on the corrosion of carbon steel in hydrochloric acid media. Egyptian Journal of Petroleum.24(3):233-239. DOI: 10.1016/j.corsci.2008.09.009.
[47] A. Fitoz, H. Nazır, M. Özgür (nee Yakut), E. Emregül. et al.(2018). An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor. Corrosion Science.133:451-464. DOI: 10.1016/j.corsci.2008.09.009.
[48] M. Moradi, Z. Song, T. Xiao. (2018). Exopolysaccharide produced by Vibrio neocaledonicus sp. as a green corrosion inhibitor: Production and structural characterization. Journal of Materials Science and Technology.34(12):2447-2457. DOI: 10.1016/j.corsci.2008.09.009.
[49] P. Koli. (2014). Solar energy conversion and storage: Fast Green FCF-Fructose photogalvanic cell. Applied Energy.118:231-237. DOI: 10.1016/j.corsci.2008.09.009.
[50] A. Mittal, D. Kaur, J. Mittal. (2009). Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. Journal of Hazardous Materials.163(2-3):568-577. DOI: 10.1016/j.corsci.2008.09.009.
[51] P. Arellanes-Lozada, O. Olivares-Xometl, N. V. Likhanova, I. V. Lijanova. et al.(2018). Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. Journal of Molecular Liquids.265:151-163. DOI: 10.1016/j.corsci.2008.09.009.
[52] S. A. Umoren, A. A. AlAhmary, Z. M. Gasem, M. M. Solomon. et al.(2018). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules.117:1017-1028. DOI: 10.1016/j.corsci.2008.09.009.
浏览 12次
下载全文 2次
评分次数 0次
用户评分 0.0分
分享 0次