首页 » 文章 » 文章详细信息
Evidence-Based Complementary and Alternative Medicine Volume 2019 ,2019-03-07
Effect of Herb-Partitioned Moxibustion on Autophagy and Immune-Associated Gene Expression Profiles in a Rat Model of Crohn’s Disease
Research Article
Ji-meng Zhao 1 Ya-nan Liu 2 Han-dan Zheng 2 Yan Huang 1 Qin Qi 2 Hui-rong Liu 1 Yin Shi 1 Xiao-peng Ma 1 Yuan Lu 1 Lu-yi Wu 3
Show affiliations
DOI:10.1155/2019/3405146
Received 2018-10-24, accepted for publication 2019-02-03, Published 2019-02-03
PDF
摘要

Objective. To investigate the immune regulation mechanism of herb-partitioned moxibustion in rats with Crohn’s disease (CD) focusing on autophagy. Methods. Rats were randomly divided into normal (N) group, CD model (M) group, CD model with herb-partitioned moxibustion (MM) group, normal with herb-partitioned moxibustion (NM) group, CD model with mesalazine (western medicine, Med ) group, and normal saline (NS) group, with 10 rats in each group. The CD model rats were prepared by trinitrobenzene sulphonic expect for the N group and NM group. After the CD rats model were established, the rats in the MM and NM groups were treated with herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6) acupoints once daily for 7 days, and rats in the Med and NS groups were respectively treated with mesalazine enteric coated tablet and normal saline once daily for 7 days. After intervention, hematoxylin-eosin staining was used to observe the histological changes of colon; RNA sequencing was used to observe the changes in autophagy- and immune-associated gene expression profiles. In addition, autophagy- and immune-associated cytokines and signaling pathways in CD rats were also screened. Results. HPM significantly increased the body weight of CD rats (P<0.01) and improved the pathological injury of colon in CD rats (P<0.01). HPM also changed the expression of many autophagy- and immune-associated genes, especially downregulating the expression of autophagy-associated Nod2, Irgm genes as well as the receptor of immune-associated Il12b, Il22 (Il12rb1, Il22ra2) genes in the colon of CD rats. HPM also changed the enrichment levels of differentially expressed genes in the human T-cell leukemia virus type-1 infection pathway, the Epstein-Barr virus infection pathway, and the cell adhesion molecule pathway. In addition, the expression levels of Nod2, Irgm, IL-12b, and IL-22 mRNA were increased (all P< 0.01) in the M group compared to the N group, while the expression levels of Nod2, Irgm, IL-12b, and IL-22 mRNA were decreased (P<0.05 or P<0.01) in the MM and Med groups compared to the M group. Conclusion. Herb-partitioned moxibustion may effectively attenuate intestinal inflammation and promote the repair of colon mucosal injury of CD rats through the regulation of autophagy- and immune-associated gene expression and signaling pathways.

授权许可

Copyright © 2019 Ji-meng Zhao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Yuan Lu.Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China, shutcm.edu.cn.luyuan_sh@163.com
2. Lu-yi Wu.Shanghai Qigong Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China, shutcm.edu.cn.luyitcm@163.com

推荐引用方式

Ji-meng Zhao,Ya-nan Liu,Han-dan Zheng,Yan Huang,Qin Qi,Hui-rong Liu,Yin Shi,Xiao-peng Ma,Yuan Lu,Lu-yi Wu. Effect of Herb-Partitioned Moxibustion on Autophagy and Immune-Associated Gene Expression Profiles in a Rat Model of Crohn’s Disease. Evidence-Based Complementary and Alternative Medicine ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] C. H. Bao, J. M. Zhao, H. R. Liu. (2014). Randomized controlled trial: moxibustion and acupuncture for the treatment of Crohn's disease. World Journal of Gastroenterology.20(31):11000-11011. DOI: 10.3748/wjg.v23.i11.1944.
[2] T. Iida, K. Onodera, H. Nakase. (2017). Role of autophagy in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology.23(11):1944-1953. DOI: 10.3748/wjg.v23.i11.1944.
[3] Y. Shi, C. H. Bao, H. G. Wu. (2011). Effect of herbs-partitioned moxibustion on the expression of intestinal mucosa TNF-a, TNFR1, TNFR2 and apoptosis of intestinal epithelial cells in Crohns disease patients. Shanghai Journal of Traditional Chinese Medicine.45(1):46-50. DOI: 10.3748/wjg.v23.i11.1944.
[4] S. Lécart, F. Morel, N. Noraz, J. Pène. et al.(2002). IL-22, in contrast to IL-10, does not induce Ig production, due to absence of a functional IL-22 receptor on activated human B cells. International Immunology.14(11):1351-1356. DOI: 10.3748/wjg.v23.i11.1944.
[5] H. Z. Yang, Z. W. Hu. (2010). The Immuno-regulatory and mechanisms of autophagy. International Journal of Immunology.33(3):165-168. DOI: 10.3748/wjg.v23.i11.1944.
[6] S. Chauhan, M. A. Mandell, V. Deretic. (2016). Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy.12(2):429-431. DOI: 10.3748/wjg.v23.i11.1944.
[7] Y. Iwakura, H. Ishigame. (2006). The IL-23/IL-17 axis in inflammation. The Journal of Clinical Investigation.116(5):1218-1222. DOI: 10.3748/wjg.v23.i11.1944.
[8] E. Bettelli, Y. Carrier, W. Gao, T. Korn. et al.(2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.441(7090):235-238. DOI: 10.3748/wjg.v23.i11.1944.
[9] J. Liu, W. Sun, X. Zhao. (2018). Sanshensancao mixture alleviates the histologic injury and reduces the level of inflammatory factors of colonic mucosa in rats with ulcerative colitis. Chinese Journal of Cellular and Molecular Immunology.34(10):876-879. DOI: 10.3748/wjg.v23.i11.1944.
[10] Y. Shi, Wu. HG. (2003). Clinical research of herb-partitioned moxibustion on the treatment of Crohns Disease. Jiangxi Journal of Traditional Chinese Medicine.34(8):16-17. DOI: 10.3748/wjg.v23.i11.1944.
[11] T. Jayakumar, C. C. Chang, S. L. Lin. (2014). Brazilin ameliorates high glucose-induced vascular inflammation via inhibiting ROS and CAMs production in human umbilical vein endothelial cells. BioMed Research International.2014-10. DOI: 10.3748/wjg.v23.i11.1944.
[12] J.-L. Lai, Y.-H. Liu, C. Liu. (2017). Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation.40(1):1-12. DOI: 10.3748/wjg.v23.i11.1944.
[13] L. Henckaerts, I. Cleynen, M. Brinar. (2011). Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease. Inflammatory Bowel Diseases.17(6):1392-1397. DOI: 10.3748/wjg.v23.i11.1944.
[14] A. Franke, D. P. McGovern, J. C. Barrett. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genetics.42(12):1118-1125. DOI: 10.3748/wjg.v23.i11.1944.
[15] X.-N. Li, J. Su, L. Zhao. (2013). The p38 MAPK inhibitor JLU1124 inhibits the inflammatory response induced by lipopolysaccharide through the MAPK-NF-B pathway in RAW264.7 macrophages. International Immunopharmacology.17(3):785-792. DOI: 10.3748/wjg.v23.i11.1944.
[16] C. R. Homer, A. L. Richmond, N. A. Rebert. (2010). ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology.139(5):1630-1641. DOI: 10.3748/wjg.v23.i11.1944.
[17] J. Hampe, A. Franke, P. Rosenstiel. (2007). A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genetics.39(2):207-211. DOI: 10.3748/wjg.v23.i11.1944.
[18] M. Beaudoin, P. Goyette, G. Boucher. (2013). Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genetics.9(9). DOI: 10.3748/wjg.v23.i11.1944.
[19] Y. Ogura, D. K. Bonen, N. Inohara. (2001). A frameshiftmutation in NOD2 associated with susceptibility to Crohn’s disease. Nature.411(6837):603-606. DOI: 10.3748/wjg.v23.i11.1944.
[20] C. Bao, L. Wu, H. Wu. (2012). Moxibustion inhibits apoptosis and tumor necrosis factor-alpha/tumor necrosis factor receptor 1 in the colonic epithelium of crohn's disease model rats. Digestive Diseases and Sciences.57(9):2286-2295. DOI: 10.3748/wjg.v23.i11.1944.
[21] H. G. Wu, L. S. Zhang. (2000). Clinical study of herbs partition moxibustion on Crohns Disease. Modern Rehabilitation.4(3, article 397). DOI: 10.3748/wjg.v23.i11.1944.
[22] S. B. Singh, A. S. Davis, G. A. Taylor, V. Deretic. et al.(2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science.313(5792):1438-1441. DOI: 10.3748/wjg.v23.i11.1944.
[23] X. M. Wang, Z. Shi, M. P. Ma. (2010). Thinking and methods of moxibustion regulation of pattern recognition receptors and signal transduction in inflammatory bowel disease. Shanghai Journal of Acupuncture and Moxibustion.29(3):136-139. DOI: 10.3748/wjg.v23.i11.1944.
[24] J. Seiderer, I. Elben, J. Diegelmann. (2008). Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): Upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflammatory Bowel Diseases.14(4):437-445. DOI: 10.3748/wjg.v23.i11.1944.
[25] D. A. Vignali, V. K. Kuchroo. (2012). IL-12 family cytokines: immunological playmakers. Nature Immunology.13(8):722-728. DOI: 10.3748/wjg.v23.i11.1944.
[26] P. Behzadi, E. Behzadi, R. Ranjbar. (2016). Il-12 family cytokines: general characteristics, pathogenic microorganisms, receptors, and signalling pathways. Acta Microbiologica et Immunologica Hungarica.63(1):1-25. DOI: 10.3748/wjg.v23.i11.1944.
[27] R. Mukai, T. Ohshima. (2014). HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene.33(18):2317-2328. DOI: 10.3748/wjg.v23.i11.1944.
[28] D. C. Baumgart, S. R. Carding. (2007). Inflammatory bowel disease: cause and immunobiology. The Lancet.369(9573):1627-1640. DOI: 10.3748/wjg.v23.i11.1944.
[29] T. Parrello, G Monteleone, S. Cucchiara. (2000). Up-regulation of the IL-12 receptor b2 chain in Crohn’s disease. Journal of Immunology.165(12):7234-7239. DOI: 10.3748/wjg.v23.i11.1944.
[30] J. P. Hugot, M. Chamaillard, H. Zouali. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature.411(6837):599-603. DOI: 10.3748/wjg.v23.i11.1944.
[31] C. Bao, L. Wu, H. Wu, Y. Shi. et al.(2012). Moxibustion inhibits apoptosis and tumor necrosis factor-alpha/tumor necrosis factor receptor 1 in the colonic epithelium of crohn's disease model rats. Digestive Diseases and Sciences.57(9):2286-2295. DOI: 10.3748/wjg.v23.i11.1944.
[32] G. P. Morris, P. L. Beck, M. S. Herridge, W. T. Depew. et al.(1989). Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology.96(3):795-803. DOI: 10.3748/wjg.v23.i11.1944.
[33] M. T. Sorbara, L. K. Ellison, M. Ramjeet, L. H. Travassos. et al.(2013). The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity.39(5):858-873. DOI: 10.3748/wjg.v23.i11.1944.
[34] K. Cadwell, J. Y. Liu, S. L. Brown. (2008). A key role for autophagy and the autophagy gene in mouse and human intestinal Paneth cells. Nature.456(7219):259-263. DOI: 10.3748/wjg.v23.i11.1944.
[35] Y. Guo. (2008). Experimental Acupuncture Science. DOI: 10.3748/wjg.v23.i11.1944.
[36] H. J. Wang, L. X. Ji. (2007). The location of the "Shenque" acupoint in rats. Acupuncture Research.32(5):312. DOI: 10.3748/wjg.v23.i11.1944.
[37] M. Salem, M. Ammitzboell, K. Nys, J. B. Seidelin. et al.(2015). ATG16L1: a multifunctional susceptibility factor in crohn disease. Autophagy.11(4):585-594. DOI: 10.3748/wjg.v23.i11.1944.
[38] O. Brain, P. Allan, A. Simmons. (2010). NOD2-mediated autophagy and Crohn disease. Autophagy.6(3):412-414. DOI: 10.3748/wjg.v23.i11.1944.
[39] T. Kawashima, H. Kawasaki, T. Kitamura. (1998). Interleukin-12 induces tyrosine phosphorylation of an 85-kDa protein associated with the interleukin-12 receptor beta 1 subunit. Cellular Immunology.186(1):39-44. DOI: 10.3748/wjg.v23.i11.1944.
[40] J. Namkung, J. Lee, E. Kim. (2010). Association of single nucleotide polymorphisms in the IL-12 (IL-12A and B) and IL-12 receptor (IL-12R1 and 2) genes and gene–gene interactions with atopic dermatitis in Koreans. Journal of Dermatological Science.57(3):199-206. DOI: 10.3748/wjg.v23.i11.1944.
[41] A. Andoh, Z. Zhang, O. Inatomi. (2005). Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology.129(3):969-984. DOI: 10.3748/wjg.v23.i11.1944.
[42] C.-H. Bao, L.-Y. Wu, Y. Shi. (2011). Moxibustion down-regulates colonic epithelial cell apoptosis and repairs tight junctions in rats with Crohn's disease. World Journal of Gastroenterology.17(45):4960-4970. DOI: 10.3748/wjg.v23.i11.1944.
[43] S. Y. Xu, R. L. Ban, X. Chen. (2001). Experimental Methodology of Pharmacology. DOI: 10.3748/wjg.v23.i11.1944.
[44] C. R. Li, X. B. Hua, H. L. Zhou. (1992). Development of acupuncture point map of guinea pigs. Shanghai Journal of Acupuncture and Moxibustion:28-30. DOI: 10.3748/wjg.v23.i11.1944.
[45] F. Obermeier, N. Dunger, U. G. Strauch. (2003). Contrasting activity of cytosine-guanosin dinucleotide oligonucleotides in mice with experimental colitis. Clinical & Experimental Immunology.134(2):217-224. DOI: 10.3748/wjg.v23.i11.1944.
[46] S. Rufini, C. Ciccacci, D. Di Fusco, A. Ruffa. et al.(2015). Autophagy and inflammatory bowel disease: association between variants of the autophagy-related IRGM gene and susceptibility to Crohn's disease. Digestive and Liver Disease.47(9):744-750. DOI: 10.3748/wjg.v23.i11.1944.
[47] S. Chauhan, M. A. Mandell, V. Deretic. (2015). IRGM governs the core autophagy machinery to conduct antimicrobial defense. Molecular Cell.58(3):507-521. DOI: 10.3748/wjg.v23.i11.1944.
[48] N. Wang, H.-Y. Tan, S. Li, Y. Feng. et al.(2017). Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in hepatocarcinogenesis. Theranostics.7(8):2325-2338. DOI: 10.3748/wjg.v23.i11.1944.
[49] Z. Luo, H. Wang, Z. Sun, W. Luo. et al.(2013). Expression of IL-22, IL-22R and IL-23 in the peri-implant soft tissues of patients with peri-implantitis. Archives of Oral Biolog.58(5):523-529. DOI: 10.3748/wjg.v23.i11.1944.
[50] S. Schmechel, A. Konrad, J. Diegelmann, J. Glas. et al.(2008). Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflammatory Bowel Diseases.14(2):204-212. DOI: 10.3748/wjg.v23.i11.1944.
[51] K. Wolk, E. Witte, U. Hoffmann. (2007). IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. The Journal of Immunology.178(9):5973-5981. DOI: 10.3748/wjg.v23.i11.1944.
文献评价指标
浏览 20次
下载全文 12次
评分次数 0次
用户评分 0.0分
分享 0次