首页 » 文章 » 文章详细信息
Canadian Journal of Gastroenterology and Hepatology Volume 2019 ,2019-03-03
Copper Mediates Anti-Inflammatory and Antifibrotic Activity of Gleevec in Hepatocellular Carcinoma-Induced Male Rats
Research Article
Iftekhar Hassan 1 Hossam Ebaid 1 Ibrahim M. Alhazza 1 Jameel Al-Tamimi 1 Shazia Aman 2 Ahmad M. Abdel-Mageed 3
Show affiliations
Received 2018-12-05, accepted for publication 2019-02-10, Published 2019-02-10

The elevated level of copper is one of the hallmark features of cancer cells in most of the types of cancer. In the present study, this feature has been targeted to investigate if coadministration of exogenous copper (Cu+) and its chelating agent like disulfiram (DSF+) influence the antineoplastic activity of the anticancer drug, Gleevec (GLV+), in hepatocellular carcinoma (HCC)-induced rats via immunomodulation. After the treatment, the level of proinflammatory interleukins (IL-1, 2, 6, and 7), anti-inflammatory interleukin (IL-10) concomitant with transcription factors (NF-kB and TNF-a), and the apoptotic marker (cleaved PARP) was estimated. The cancer-induced group without treatment (CN+) demonstrated abnormally elevated level of all proinflammatory cytokines and transcription factors concomitant with a compromised level of cleaved PARP as compared to the control normal (CN-). The detailed histological analysis also supported the results exhibiting extensive inflammation and tissue fibrosis confirming the second stage of HCC. Cu+, DSF+, and GLV+ displayed mild improvement in most of the parameters, but the combination group GLV + Cu+ demonstrated remarkable recovery in histology and most of the parameters tended towards the CN- followed by GLV + DSF+. Therefore, the management of copper level is critical in realizing the antineoplastic activity of GLV up to its full potential in cancer treatment. These findings will help in improving chemoimmunotherapy and personalized cancer treatment.


Copyright © 2019 Iftekhar Hassan et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Hossam Ebaid.Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia, ksu.edu.sa.hossamebaid1969@gmail.com


Iftekhar Hassan,Hossam Ebaid,Ibrahim M. Alhazza,Jameel Al-Tamimi,Shazia Aman,Ahmad M. Abdel-Mageed. Copper Mediates Anti-Inflammatory and Antifibrotic Activity of Gleevec in Hepatocellular Carcinoma-Induced Male Rats. Canadian Journal of Gastroenterology and Hepatology ,Vol.2019(2019)



[1] K. Ishak, A. Baptista, L. Bianchi. (1995). Histological grading and staging of chronic hepatitis. Journal of Hepatology.22(6):696-699. DOI: 10.1038/nature07163.
[2] S. Spreckelmeyer, M. van der Zee, B. Bertrand, E. Bodio. et al.(2018). Relevance of copper and organic cation transporters in the activity and transport mechanisms of an anticancer cyclometallated gold (III) compound in comparison to cisplatin. Frontiers in Chemistry.6, article 377. DOI: 10.1038/nature07163.
[3] M. Kotb, T. Calandra. (2003). Cytokines and Chemokines in Infectious Diseases Handbook. DOI: 10.1038/nature07163.
[4] J. A. Tainer, E. D. Getzoff, J. S. Richardson, D. C. Richardson. et al.(1983). Structure and mechanism of copper, zinc superoxide dismutase. Nature.306(5940):284-287. DOI: 10.1038/nature07163.
[5] J. Al-Tamimi, A. Semlali, I. Hassan, H. Ebaid. et al.(2018). Samsum ant venom exerts anticancer activity through immunomodulation in vitro and in vivo. Cancer Biotherapy and Radiopharmaceuticals.33(2):65-73. DOI: 10.1038/nature07163.
[6] A. A. Khan, M. Jabeen, A. A. Khan, M. Owais. et al.(2013). Anticancer efficacy of a novel propofol–linoleic acid-loaded escheriosomal formulation against murine hepatocellular carcinoma. Nanomedicine.8(8):1281-1294. DOI: 10.1038/nature07163.
[7] M. Mack. (2018). Inflammation and fibrosis. Matrix Biology.68-69:106-121. DOI: 10.1038/nature07163.
[8] A. Rizvi, M. Farhan, I. Naseem, S. M. Hadi. et al.(2016). Calcitriol–copper interaction leads to non enzymatic, reactive oxygen species mediated DNA breakage and modulation of cellular redox scavengers in hepatocellular carcinoma. Apoptosis.21(9):997-1007. DOI: 10.1038/nature07163.
[9] D. Denoyer, S. Masaldan, S. La Fontaine, M. A. Cater. et al.(2015). Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics.7(11):1459-1476. DOI: 10.1038/nature07163.
[10] Y. Koyama, D. A. Brenner. (2017). Liver inflammation and fibrosis. The Journal of Clinical Investigation.127(1):55-64. DOI: 10.1038/nature07163.
[11] J. Kowalski, P. Blada, K. Kucia, A. Madej. et al.(2001). Neuroleptics normalize increased release of interleukin-1 and tumor necrosis factor- from monocytes in schizophrenia. Schizophrenia Research.50(3):169-175. DOI: 10.1038/nature07163.
[12] Y. Li, J. Yin, Z. Liu, X. Li. et al.(2018). Copper efflux transporters ATP7A and ATP7B: novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life.70(3):183-191. DOI: 10.1038/nature07163.
[13] A. J. Czaja. (2014). Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World Journal of Gastroenterology.20(10):2515-2532. DOI: 10.1038/nature07163.
[14] S. K. Gupta, V. K. Shukla, M. P. Vaidya, S. K. Roy. et al.(1993). Serum and tissue trace elements in colorectal cancer. Journal of Surgical Oncology.52(3):172-175. DOI: 10.1038/nature07163.
[15] S. M. Hadi, M. F. Ullah, A. S. Azmi, A. Ahmad. et al.(2010). Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer. Pharmaceutical Research.27(6):979-988. DOI: 10.1038/nature07163.
[16] E. Wallace, L. Gewin. (2013). Imatinib: novel treatment of immune-mediated kidney injury. Journal of the American Society of Nephrology.24(5):694-701. DOI: 10.1038/nature07163.
[17] M. Erguven, A. Bilir, N. Yazihan, S. Korkmaz. et al.(2012). Imatinib mesylate decreases the cytotoxic effect of roscovitine on human glioblastoma cells in vitro and the role of midkine. Oncology Letters.3(1):200-208. DOI: 10.1038/nature07163.
[18] H. Ebaid, J. Al-Tamimi, I. Hassan, I. Alhazza. et al.(2014). Antioxidant bioactivity of Samsum ant (Pachycondyla sennaarensis) venom protects against CCL-induced nephrotoxicity in mice. Oxidative Medicine and Cellular Longevity.2014-8. DOI: 10.1038/nature07163.
[19] G. D. Kaiafa, Z. Saouli, M. D. Diamantidis, Z. Kontoninas. et al.(2012). Copper levels in patients with hematological malignancies. European Journal of Internal Medicine.23(8):738-741. DOI: 10.1038/nature07163.
[20] G. J. Brewer. (2005). Anticopper therapy against cancer and diseases of inflammation and fibrosis. Drug Discovery Therapy.10(16):1103-1109. DOI: 10.1038/nature07163.
[21] Y.-F. Ding, Z.-H. Wu, Y.-J. Wei, L. Shu. et al.(2017). Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine. Journal of Cancer Research and Clinical Oncology.143(5):821-834. DOI: 10.1038/nature07163.
[22] N. Suthahar, W. C. Meijers, H. H. W. Silljé, R. A. de Boer. et al.(2017). Inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Current Heart Failure Reports.14(4):235-250. DOI: 10.1038/nature07163.
[23] W. G. Couser. (2012). Basic and translational concepts of immune-mediated glomerular diseases. Journal of the American Society of Nephrology.23(3):381-399. DOI: 10.1038/nature07163.
[24] R. N. Aravalli, E. N. K. Cressman, C. J. Steer. (2013). Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Archives of Toxicology.87(2):227-247. DOI: 10.1038/nature07163.
[25] F. Wang, P. Jiao, M. Qi, M. Frezza. et al.(2010). Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Current Medicinal Chemistry.17(25):2685-2698. DOI: 10.1038/nature07163.
[26] S. B. Lee, R. Kalluri. (2010). Mechanistic connection between inflammation and fibrosis. Kidney International Supplements.78(119):S22-S26. DOI: 10.1038/nature07163.
[27] H. Ebaid, M. Al-Khalifa, A. M. Isa, S. Gadoa. et al.(2012). Bioactivity of Samsum ant (Pachycondyla sennaarensis) venom against lipopolysaccharides through antioxidant and upregulation of Akt1 signaling in rats. Lipids in Health and Disease.11, article 93. DOI: 10.1038/nature07163.
[28] M. Arredondo, M. T. Núñez. (2005). Iron and copper metabolism. Molecular Aspects of Medicine.26(4-5):313-327. DOI: 10.1038/nature07163.
[29] S. R. Setty, D. Tenza, E. V. Sviderskaya, D. C. Bennett. et al.(2008). Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature.454(7208):1142-1146. DOI: 10.1038/nature07163.
[30] M. L. Turski, D. J. Thiele. (2009). New roles for copper metabolism in cell proliferation, signaling, and disease. The Journal of Biological Chemistry.284(2):717-721. DOI: 10.1038/nature07163.
[31] Y. Yoshida, S. Furuta, E. Niki. (1993). Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochimica et Biophysica Acta.1210(1):81-88. DOI: 10.1038/nature07163.
[32] D. Cen, R. I. Gonzalez, J. A. Buckmeier, R. S. Kahlon. et al.(2002). Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Molecular Cancer Therapeutics.1(3):197-204. DOI: 10.1038/nature07163.
[33] Y. Yamane, K. Sakai, T. Umeda, N. Murata. et al.(1984). Suppressive effect of cupric acetate on DNA alkylation, DNA synthesis and tumorigenesis in the liver of dimethylnitrosamine-treated rats. GANN Japanese Journal of Cancer Research.75(12):1062-1069. DOI: 10.1038/nature07163.
[34] A. Gupte, R. J. Mumper. (2009). Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treatment Reviews.35(1):32-46. DOI: 10.1038/nature07163.
[35] M. Hrgovcic, C. F. Tessmer, F. B. Thomas, P. S. Ong. et al.(1973). Serum copper observations in patients with malignant lymphoma. Cancer.32(6):1512-1524. DOI: 10.1038/nature07163.
[36] I. Hassan, S. Chibber, I. Naseem. (2013). Vitamin B: a promising adjuvant in cisplatin based chemoradiotherapy by cellular redox management. Food and Chemical Toxicology.59:715-723. DOI: 10.1038/nature07163.
[37] S. Majumder, P. Dutta, S. K. Choudhuri. (2005). The role of copper in development of drug resistance in murine carcinoma. Medicinal Chemistry.1(6):563-573. DOI: 10.1038/nature07163.
[38] D. M. Parkin, F. Bray, J. Ferlay, P. Pisani. et al.(2005). Global cancer statistics, 2002. A Cancer Journal for Clinicians.55(2):74-108. DOI: 10.1038/nature07163.
[39] D. Chen, Q. P. Dou. (2008). New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opinion on Therapeutic Targets.12(6):739-748. DOI: 10.1038/nature07163.
[40] I. Hassan, A. A. Khan, S. Aman, W. Qamar. et al.(2018). Restrained management of copper level enhances the antineoplastic activity of imatinib in vitro and in vivo. Scientific Reports.8(1, article 1682). DOI: 10.1038/nature07163.
[41] S. Apelgot, J. Coppey, A. Fromentin, E. Guille. et al.(1986). Altered distribution of copper (64Cu) in tumor-bearing mice and rats.. Anticancer Reseach.6(2):159-164. DOI: 10.1038/nature07163.
[42] U. E. Lee, S. L. Friedman. (2011). Mechanisms of hepatic fibrogenesis. Best Practice & Research: Clinical Gastroenterology.25(2):195-206. DOI: 10.1038/nature07163.
[43] X. L. Zuo, J. M. Chen, X. Zhou, X. Z. Li. et al.(2006). Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia. Biological Trace Element Research.114(1-3):41-54. DOI: 10.1038/nature07163.
浏览 59次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次