首页 » 文章 » 文章详细信息
Advances in Human-Computer Interaction Volume 2019 ,2019-03-04
Improving Physical Activity mHealth Interventions: Development of a Computational Model of Self-Efficacy Theory to Define Adaptive Goals for Exercise Promotion
Research Article
Dario Baretta 1 Fabio Sartori 2 Andrea Greco 3 Marco D’Addario 1 Riccardo Melen 2 Patrizia Steca 1
Show affiliations
DOI:10.1155/2019/3068748
Received 2018-10-25, accepted for publication 2019-02-11, Published 2019-02-11
PDF
摘要

The practice of regular physical exercise is a protective factor against noncommunicable diseases and premature mortality. In spite of that, large part of the population does not meet physical activity guidelines and many individuals live a sedentary life. Recent technological progresses and the widespread adoption of mobile technology, such as smartphone and wearables, have opened the way to the development of digital behaviour change interventions targeting physical activity promotion. Such interventions would greatly benefit from the inclusion of computational models framed on behaviour change theories and model-based reasoning. However, research on these topics is still at its infancy. The current paper presents a smartphone application and wearable device system called Muoviti! that targets physical activity promotion among adults not meeting the recommended physical activity guidelines. Specifically, we propose a computational model of behaviour change, grounded on the social cognitive theory of self-efficacy. The purpose of the computational model is to dynamically integrate information referring to individuals’ self-efficacy beliefs and physical activity behaviour in order to define exercising goals that adapt to individuals’ changes over time. The paper presents (i) the theoretical constructs that informed the development of the computational model, (ii) an overview of Muoviti! describing the system dynamics, the graphical user interface, the adopted measures and the intervention design, and (iii) the computational model based on Dynamic Decision Network. We conclude by presenting early results from an experimental study.

授权许可

Copyright © 2019 Dario Baretta et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Dario Baretta.Department of Psychology, University of Milan-Bicocca 20126, Milan, Italy, unimib.it.d.baretta@campus.unimib.it

推荐引用方式

Dario Baretta,Fabio Sartori,Andrea Greco,Marco D’Addario,Riccardo Melen,Patrizia Steca. Improving Physical Activity mHealth Interventions: Development of a Computational Model of Self-Efficacy Theory to Define Adaptive Goals for Exercise Promotion. Advances in Human-Computer Interaction ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. L. Webb, J. Joseph, L. Yardley, S. Michie. et al.(2010). Using the Internet to promote health behavior change: A systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. Journal of Medical Internet Research. DOI: 10.1016/j.amepre.2016.05.001.
[2] E. B. Hekler, P. Klasnja, V. Traver, M. Hendriks. et al.(2013). Realizing effective behavioral management of health: the metamorphosis of behavioral science methods. IEEE Pulse. DOI: 10.1016/j.amepre.2016.05.001.
[3] A. Bandura. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review.84(2):191-215. DOI: 10.1016/j.amepre.2016.05.001.
[4] S. Pagoto, G. G. Bennett. (2013). How behavioral science can advance digital health. Translational Behavioral Medicine. DOI: 10.1016/j.amepre.2016.05.001.
[5] G. Valenti, K. R. Westerterp. Optical heart rate monitoring module validation study. . DOI: 10.1016/j.amepre.2016.05.001.
[6] S. E. Stahl, H.-S. An, D. M. Dinkel, J. M. Noble. et al.(2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough?. BMJ Open Sport & Exercise Medicine. DOI: 10.1016/j.amepre.2016.05.001.
[7] E. B. Hekler, D. E. Rivera, C. A. Martin, S. S. Phatak. et al.(2018). Tutorial for using control systems engineering to optimize adaptive mobile health interventions. Journal of Medical Internet Research.20(6):e214. DOI: 10.1016/j.amepre.2016.05.001.
[8] A. Boutayeb, S. Boutayeb. (2005). The burden of non communicable diseases in developing countries. International Journal for Equity in Health. DOI: 10.1016/j.amepre.2016.05.001.
[9] B. K. Pedersen, B. Saltin. (2015). Exercise as medicine - Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian Journal of Medicine and Science. DOI: 10.1016/j.amepre.2016.05.001.
[10] C. D. Darker, D. P. French, F. F. Eves, F. F. Sniehotta. et al.(2010). An intervention to promote walking amongst the general population based on an “extended” theory of planned behaviour: a waiting list randomised controlled trial. Psychology & Health. DOI: 10.1016/j.amepre.2016.05.001.
[11] W. J. Nilsen, M. Pavel. (2013). Moving behavioral theories into the 21st century: technological advancements for improving quality of life. IEEE Pulse. DOI: 10.1016/j.amepre.2016.05.001.
[12] A. Bandura. (1997). Self Efficacy: the exercise of control. American Journal Os Health Promotion. DOI: 10.1016/j.amepre.2016.05.001.
[13] G. R. Dutton, F. Tan, B. C. Provost, J. L. Sorenson. et al.(2009). Relationship between self-efficacy and physical activity among patients with type 2 diabetes. Journal of Behavioral Medicine. DOI: 10.1016/j.amepre.2016.05.001.
[14] I. Nahum-Shani, S. N. Smith, B. J. Spring, L. M. Collins. et al.Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. . DOI: 10.1016/j.amepre.2016.05.001.
[15] S. L. Britner, F. Pajares. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching. DOI: 10.1016/j.amepre.2016.05.001.
[16] L. T. Cowan, S. A. van Wagenen, B. A. Brown, R. J. Hedin. et al.(2013). Apps of steel: are exercise apps providing consumers with realistic expectations?: a content analysis of exercise apps for presence of behavior change theory. Health Education and Behavior. DOI: 10.1016/j.amepre.2016.05.001.
[17] P. Steca, L. Pancani, F. Cesana, F. Fattirolli. et al.(2016). Changes in physical activity among coronary and hypertensive patients: A longitudinal study using the Health Action Process Approach. Psychology & Health.32(3):361-380. DOI: 10.1016/j.amepre.2016.05.001.
[18] D. Spruijt-Metz, E. Hekler, N. Saranummi, S. Intille. et al.(2015). Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Translational Behavioral Medicine.5(3):335-346. DOI: 10.1016/j.amepre.2016.05.001.
[19] A. Luszczynska, R. Schwarzer. (2005). Social cognitive theory. Predicting Health Behaviour. DOI: 10.1016/j.amepre.2016.05.001.
[20] P. Steca, L. Pancani, A. Greco, M. D'Addario. et al.(2015). Changes in dietary behavior among coronary and hypertensive patients: a longitudinal investigation using the health action process approach. Applied Psychology: Health and Well-Being.7(3):316-339. DOI: 10.1016/j.amepre.2016.05.001.
[21] F. Sartori, A. Mazzucchelli, A. Di. Gregorio. (2016). Bankruptcy forecasting using case-based reasoning: The CRePERIE approach. Expert Systems with Applications. DOI: 10.1016/j.amepre.2016.05.001.
[22] L. Manenti, F. Sartori. (2011). etadata support to retrieve and revise solutions in case-based reasoning. International Journal of Metadata, Semantics and Ontologies. DOI: 10.1016/j.amepre.2016.05.001.
[23] S. Shiffman, A. A. Stone, M. R. Hufford. Ecological momentary assessment. . DOI: 10.1016/j.amepre.2016.05.001.
[24] Who. (2010). Global Recommendations on Physical Activity for Health. DOI: 10.1016/j.amepre.2016.05.001.
[25] P. Pirolli. (2016). A computational cognitive model of self-efficacy and daily adherence in mHealth. Translational Behavioral Medicine.6(4):496-508. DOI: 10.1016/j.amepre.2016.05.001.
[26] N. Lathia, V. Pejovic, K. K. Rachuri, C. Mascolo. et al.(2013). Smartphones for large-scale behavior change interventions. IEEE Pervasive Computing. DOI: 10.1016/j.amepre.2016.05.001.
[27] T. Armstrong, F. Bull. (2006). Development of the world health organization global physical activity questionnaire (GPAQ). Journal of Public Health. DOI: 10.1016/j.amepre.2016.05.001.
[28] C. W. Loo, J. L. F. Choy. (2013). Sources of self-efficacy influencing academic performance of engineering students. American Journal of Educational Research. DOI: 10.1016/j.amepre.2016.05.001.
[29] K. Patrick, E. B. Hekler, D. Estrin, D. C. Mohr. et al.(2016). The pace of technologic change: implications for digital health behavior intervention research. American Journal of Preventive Medicine.51(5):816-824. DOI: 10.1016/j.amepre.2016.05.001.
[30] E. B. Hekler, S. Michie, M. Pavel, D. E. Rivera. et al.(2016). Advancing models and theories for digital behavior change interventions. American Journal of Preventive Medicine.51(5):825-832. DOI: 10.1016/j.amepre.2016.05.001.
[31] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass. et al.(2004). An integrated theory of the mind. Psychological Review. Psychological Review. DOI: 10.1016/j.amepre.2016.05.001.
[32] C. A. Martin, S. Deshpande, E. B. Hekler, D. E. Rivera. et al.A system identification approach for improving behavioral interventions based on Social Cognitive Theory. . DOI: 10.1016/j.amepre.2016.05.001.
[33] A. E. Bauman, R. S. Reis, J. F. Sallis, J. C. Wells. et al.(2012). Correlates of physical activity: why are some people physically active and others not?. The Lancet.380(9838):258-271. DOI: 10.1016/j.amepre.2016.05.001.
[34] L. S. Rovniak, E. S. Anderson, R. A. Winett, R. S. Stephens. et al.ocial cognitive determinants of physical activity in young adults: A prospective structural equation analysis. . DOI: 10.1016/j.amepre.2016.05.001.
[35] E. A. Locke, G. P. Latham. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist. DOI: 10.1016/j.amepre.2016.05.001.
[36] V. Burke, L. J. Beilin, H. E. Cutt, J. Mansour. et al.(2008). Moderators and mediators of behaviour change in a lifestyle program for treated hypertensives: a randomized controlled trial (ADAPT). Health Education Research. DOI: 10.1016/j.amepre.2016.05.001.
[37] W. T. Riley, D. E. Rivera, A. A. Atienza, W. Nilsen. et al.(2011). Health behavior models in the age of mobile interventions: Are our theories up to the task?. Translational Behavioral Medicine. DOI: 10.1016/j.amepre.2016.05.001.
[38] L. M. Warner, B. Schüz, J. K. Wolff, L. Parschau. et al.(2014). Sources of self-efficacy for physical activity. Health Psychology. DOI: 10.1016/j.amepre.2016.05.001.
[39] S. Ashford, J. Edmunds, D. P. French. (2010). What is the best way to change self-efficacy to promote lifestyle and recreational physical activity? A systematic review with meta-analysis. British Journal of Health Psychology. DOI: 10.1016/j.amepre.2016.05.001.
文献评价指标
浏览 57次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次