首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2019 ,2019-01-22
Output Regulation for a Class of MIMO Uncertain Stochastic Nonlinear Systems by Active Disturbance Rejection Control Approach
Research Article
Chunwan Lv 1 Guoshun Huang 1 Zhengyong Ouyang 1 Jian Chen 1 Lingxin Bao 2 , 3
Show affiliations
DOI:10.1155/2019/5674212
Received 2018-10-30, accepted for publication 2019-01-08, Published 2019-01-08
PDF
摘要

In this paper, the active disturbance rejection control (ADRC) approach is applied to a class of multi-input multioutput (MIMO) uncertain stochastic nonlinear systems. An extended state observer (ESO) is first designed for estimation of both unmeasured states and stochastic total disturbance of each subsystem which represents the total effects of internal unmodeled stochastic dynamics and external stochastic disturbance with unknown statistical property. The ADRC controller based on the states of ESO is further designed to achieve the closed-loop system’s output regulation performance including practical mean square reference signals tracking, disturbance attenuation, and practical mean square stability when the reference signals are zero avoiding solving any partial differential equations in the conventional output regulation theory. Some numerical simulations are presented to demonstrate the effectiveness of the proposed ADRC approach.

授权许可

Copyright © 2019 Chunwan Lv et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Lingxin Bao.School of Computer and Information, Fujian Agriculture and Forestry University, Fuzhou 350002, China, fjau.edu.cn;Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, cas.cn.lxbao@amss.ac.cn

推荐引用方式

Chunwan Lv,Guoshun Huang,Zhengyong Ouyang,Jian Chen,Lingxin Bao. Output Regulation for a Class of MIMO Uncertain Stochastic Nonlinear Systems by Active Disturbance Rejection Control Approach. Mathematical Problems in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Huang. (2004). Nonlinear Output Regulation: Theory and Applications.8. DOI: 10.1016/0005-1098(76)90006-6.
[2] H. Deng, M. Krstić. (2000). Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance. Systems & Control Letters.39(3):173-182. DOI: 10.1016/0005-1098(76)90006-6.
[3] B. A. Francis, W. M. Wonham. (1976). The internal model principle of control theory. Automatica.12(5):457-465. DOI: 10.1016/0005-1098(76)90006-6.
[4] Z. Gao. (2014). On the centrality of disturbance rejection in automatic control. ISA Transactions®.53(4):850-857. DOI: 10.1016/0005-1098(76)90006-6.
[5] H. Sira-Ramírez, J. Linares-Flores, C. García-Rodríguez, M. A. Contreras-Ordaz. et al.(2014). On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Transactions on Control Systems Technology.22(5):2056-2063. DOI: 10.1016/0005-1098(76)90006-6.
[6] J. Q. Han. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics.56(3):900-906. DOI: 10.1016/0005-1098(76)90006-6.
[7] Z.-H. Wu, B.-Z. Guo. (2018). Approximate decoupling and output tracking for {MIMO} nonlinear systems with mismatched uncertainties via {ADRC} approach. Journal of The Franklin Institute.355(9):3873-3894. DOI: 10.1016/0005-1098(76)90006-6.
[8] Q. Zheng, L. Q. Gao, Z. Gao. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. :3501-3506. DOI: 10.1016/0005-1098(76)90006-6.
[9] B.-Z. Guo, H.-C. Zhou. (2015). The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance. IEEE Transactions on Automatic Control.60(1):143-157. DOI: 10.1016/0005-1098(76)90006-6.
[10] Z. H. Wu, B. Z. Guo. Active disturbance rejection control to MIMO nonlinear systems with stochastic uncertainties: approximate decoupling and output-feedback stabilisation. International Journal of Control. DOI: 10.1016/0005-1098(76)90006-6.
[11] D. J. Higham. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review.43(3):525-546. DOI: 10.1016/0005-1098(76)90006-6.
[12] H. Zhou. (2017). Output-based disturbance rejection control for 1-D anti-stable Schr\"Odinger equation with boundary input matched unknown disturbance. International Journal of Robust and Nonlinear Control.27(18):4686-4705. DOI: 10.1016/0005-1098(76)90006-6.
[13] Z. Gao. Scaling and bandwidth-parameterization based controller tuning. :4989-4996. DOI: 10.1016/0005-1098(76)90006-6.
[14] B.-Z. Guo, Z.-H. Wu. (2017). Active disturbance rejection control approach to output-feedback stabilization of lower triangular nonlinear systems with stochastic uncertainty. International Journal of Robust and Nonlinear Control.27(16):2773-2797. DOI: 10.1016/0005-1098(76)90006-6.
[15] Z. H. Wu, B. Z. Guo. On convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems. International Journal of Control. DOI: 10.1016/0005-1098(76)90006-6.
[16] H. Deng, M. Krstić. (1999). Output-feedback stochastic nonlinear stabilization. IEEE Transactions on Automatic Control.44(2):328-333. DOI: 10.1016/0005-1098(76)90006-6.
[17] B.-Z. Guo, Z.-H. Wu, H.-C. Zhou. (2016). Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Transactions on Automatic Control.61(6):1613-1618. DOI: 10.1016/0005-1098(76)90006-6.
[18] H.-C. Zhou, H. Feng. (2018). Disturbance estimator based output feedback exponential stabilization for Euler-Bernoulli beam equation with boundary control. Automatica.91:79-88. DOI: 10.1016/0005-1098(76)90006-6.
[19] Z. H. Qu. (1998). Robust Control of Nonlinear Uncertain Systems. DOI: 10.1016/0005-1098(76)90006-6.
[20] M. Krstic, I. Kanellakopoulos, P. Kokotovic. (1995). Nonlinear and Adaptive Control Design. DOI: 10.1016/0005-1098(76)90006-6.
[21] Y. Xia, M. Fu. (2013). Compound Control Methodology for Flight Vehicles. DOI: 10.1016/0005-1098(76)90006-6.
[22] A. Isidori. (1995). Nonlinear Control Systems. DOI: 10.1016/0005-1098(76)90006-6.
[23] B.-Z. Guo, Z.-L. Zhao. (2011). On the convergence of an extended state observer for nonlinear systems with uncertainty. Systems & Control Letters.60(6):420-430. DOI: 10.1016/0005-1098(76)90006-6.
[24] B. Sun, Z. Gao. (2005). A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Transactions on Industrial Electronics.52(5):1271-1277. DOI: 10.1016/0005-1098(76)90006-6.
[25] J. Vincent, D. Morris, N. Usher, Z. Gao. et al.(2011). On active disturbance rejection based control design for superconducting RF cavities. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.643(1):11-16. DOI: 10.1016/0005-1098(76)90006-6.
[26] Z. H. Wu, B. Z. Guo. Extended state observer for MIMO nonlinear systems with stochastic uncertainties. International Journal of Control. DOI: 10.1016/0005-1098(76)90006-6.
[27] Z. L. Huang, W. Q. Zhu, Y. Q. Ni, J. M. Ko. et al.(2002). Stochastic averaging of strongly non-linear oscillators under bounded noise excitation. Journal of Sound and Vibration.254(2):245-267. DOI: 10.1016/0005-1098(76)90006-6.
[28] H. Feng, B.-Z. Guo. (2017). A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. Institute of Electrical and Electronics Engineers Transactions on Automatic Control.62(8):3774-3787. DOI: 10.1016/0005-1098(76)90006-6.
[29] L. Liu, Z. Chen, J. Huang. (2009). Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica.45(5):1306-1311. DOI: 10.1016/0005-1098(76)90006-6.
[30] B. Guo, Z. Zhao. (2013). On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM Journal on Control and Optimization.51(2):1727-1757. DOI: 10.1016/0005-1098(76)90006-6.
[31] Z.-L. Zhao, B.-Z. Guo. (2018). A novel extended state observer for output tracking of {MIMO} systems with mismatched uncertainty. Institute of Electrical and Electronics Engineers Transactions on Automatic Control.63(1):211-218. DOI: 10.1016/0005-1098(76)90006-6.
[32] F. Hu, L. C. Chen, W. Q. Zhu. (2012). Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation. International Journal of Non-Linear Mechanics.47(10):1081-1087. DOI: 10.1016/0005-1098(76)90006-6.
[33] H. Feng, B.-Z. Guo. (2017). Active disturbance rejection control: Old and new results. Annual Reviews in Control.44:238-248. DOI: 10.1016/0005-1098(76)90006-6.
[34] Z. L. Huang, W. Q. Zhu. (2004). Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations. Probabilistic Engineering Mechanics.19(3):219-228. DOI: 10.1016/0005-1098(76)90006-6.
文献评价指标
浏览 44次
下载全文 2次
评分次数 0次
用户评分 0.0分
分享 0次