首页 » 文章 » 文章详细信息
Advances in High Energy Physics Volume 2019 ,2019-01-23
Perfect Fluid Dark Matter Influence on Thermodynamics and Phase Transition for a Reissner-Nordstrom-Anti-de Sitter Black Hole
Research Article
Zhaoyi Xu 1 , 2 , 3 , 4 Xian Hou 1 , 3 , 4 Jiancheng Wang 1 , 2 , 3 , 4 Yi Liao 5 , 6
Show affiliations
DOI:10.1155/2019/2434390
Received 2018-06-05, accepted for publication 2018-12-23, Published 2018-12-23
PDF
摘要

Based on Reissner-Nordstrom-anti-de Sitter(RN-AdS) black hole surrounded by perfect fluid dark matter, we study the thermodynamics and phase transition by extending the phase space defined by the charge square Q2 and the conjugate quantity ψ, where ψ is a function of horizon radius. The first law of thermodynamics and the equation of state are derived in the form Q2=Q2(T,ψ). By investigating the critical behaviour of perfect fluid dark matter around Reissner-Nordstrom-anti-de Sitter black hole, we find that these thermodynamics system are similar to Van der Waals system and can be explained by mean field theory. We also explore the Ruppeiner thermodynamic geometry feature and their connection with microscopic structure. We find that in extended phase space there are existence singularity points of Ruppeiner curvature and they could explained as phase transitions.

授权许可

Copyright © 2019 Zhaoyi Xu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

通讯作者

1. Zhaoyi Xu.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, China, cas.cn;University of Chinese Academy of Sciences, Beijing, 100049, China, ucas.ac.cn;Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, China, cas.cn;Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, China, cas.cn.zyxu88@ynao.ac.cn
2. Xian Hou.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, China, cas.cn;Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, China, cas.cn;Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, China, cas.cn.xianhou.astro@gmail.com
3. Yi Liao.Department of Physics, National University of Defense Technology, Changsha, 410073, China, nudt.edu.cn;Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha, 410073, China, nudt.edu.cn.liaoyitianyi@gmail.com

推荐引用方式

Zhaoyi Xu,Xian Hou,Jiancheng Wang,Yi Liao. Perfect Fluid Dark Matter Influence on Thermodynamics and Phase Transition for a Reissner-Nordstrom-Anti-de Sitter Black Hole. Advances in High Energy Physics ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. D. Bekenstein. (1972). Black holes and the second law. Lettere Al Nuovo Cimento Series 2.4(15):737-740. DOI: 10.1007/BF02757029.
[2] Y.-H. Wei, J. Ren. (2013). Thermodynamic properties of Reissner—Nordström—de Sitter quintessence black holes. Chinese Physics B.22. DOI: 10.1007/BF02757029.
[3] J. D. Bekenstein. (1974). Generalized second law of thermodynamics in black-hole physics. Physical Review D: Particles, Fields, Gravitation and Cosmology.9(12):3292-3300. DOI: 10.1007/BF02757029.
[4] Y.-H. Wei, Z.-H. Chu. (2011). Thermodynamic Properties of a Reissner—Nordström Quintessence Black Hole. Chinese Physics Letters.28. DOI: 10.1007/BF02757029.
[5] A. G. Riess, L.-G. Strolger, J. Tonry. (2004). Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. The Astrophysical Journal.607:665. DOI: 10.1007/BF02757029.
[6] E. J. Copeland, M. Sami, S. Tsujikawa. (2006). Dynamics of dark energy. International Journal of Modern Physics D.15(11):1753-1935. DOI: 10.1007/BF02757029.
[7] P. J. E. Peebles, B. Ratra. (2003). The cosmological constant and dark energy. Reviews of Modern Physics.75(2):559-606. DOI: 10.1007/BF02757029.
[8] K. Ghaderi, B. Malakolkalami. (2016). Thermodynamics of the Schwarzschild and the Reissner-Nordström black holes with quintessence. Nuclear Physics B.903:10-18. DOI: 10.1007/BF02757029.
[9] Z. Xu, J. Wang. Thermodynamics and Phase Transition in Rotational Kiselev Black Hole. . DOI: 10.1007/BF02757029.
[10] Z. Stuchlík. (2005). Influence of the RELICT Cosmological Constant on Accretion Discs. Modern Physics Letters A.20(8):561-575. DOI: 10.1007/BF02757029.
[11] J. D. Bekenstein. (1973). Black holes and entropy. Physical Review D: Particles, Fields, Gravitation and Cosmology.7:2333-2346. DOI: 10.1007/BF02757029.
[12] S. W. Hawking. (1974). Black hole explosions?. Nature.284(5443):30-31. DOI: 10.1007/BF02757029.
[13] K. Ghaderi, B. Malakolkalami. (2016). Effects of quintessence on thermodynamics of the black holes. Astrophysics and Space Science.361:161. DOI: 10.1007/BF02757029.
[14] S. W. Hawking. (1971). Gravitational radiation from colliding black holes. Physical Review Letters.26(21):1344-1346. DOI: 10.1007/BF02757029.
[15] R. Tharanath, N. Varghese, V. C. Kuriakose. (2014). Phase transition, quasinormal modes and Hawking radiation of Schwarzschild black hole in quintessence field. Modern Physics Letters A.29. DOI: 10.1007/BF02757029.
[16] A. Dehyadegari, A. Sheykhi, A. Montakhab. (2017). Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space. Physics Letters B.768:235-240. DOI: 10.1007/BF02757029.
[17] B. Toshmatov, Z. Stuchlk, B. Ahmedov. Rotating black hole solutions with quintessential energy. . DOI: 10.1007/BF02757029.
[18] E. Spallucci, A. Smailagic. Maxwell's equal area law and the Hawking-Page phase transition. . DOI: 10.1007/BF02757029.
[19] V. V. Kiselev. (2005). Vector field and rotational curves in dark galactic halos. Classical and Quantum Gravity.22(3):541-557. DOI: 10.1007/BF02757029.
[20] V. V. Kiselev. (2003). Quintessential solution of dark matter rotation curves and its simulation by extra dimensions. High Energy Physics-11. DOI: 10.1007/BF02757029.
[21] D. Kubiznák, R. B. Mann. (2012). P − V criticality of charged AdS black holes. Journal of High Energy Physics.7:33. DOI: 10.1007/BF02757029.
[22] B. Ranjan Majhi, S. Samanta. (2017). P-V criticality of AdS black holes in a general framework. Physics Letters B.773:203-207. DOI: 10.1007/BF02757029.
[23] V. V. Kiselev. (2003). Quintessence and black holes. Classical and Quantum Gravity.20(6):1187-1197. DOI: 10.1007/BF02757029.
[24] M.-H. Li, K.-C. Yang. (2012). Galactic dark matter in the phantom field. Physical Review D: Particles, Fields, Gravitation and Cosmology.86. DOI: 10.1007/BF02757029.
[25] A. Sahay, T. Sarkar, G. Sengupta. (2010). Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes. Journal of High Energy Physics.7:82. DOI: 10.1007/BF02757029.
[26] Z. Xu, J. Wang. (2017). Kerr-Newman-AdS black hole in quintessential dark energy. Physical Review D: Particles, Fields, Gravitation and Cosmology.95. DOI: 10.1007/BF02757029.
[27] G. Ruppeiner. (1979). Thermodynamics: a Riemannian geometric model. Physical Review A: Atomic, Molecular and Optical Physics.20(4):1608-1613. DOI: 10.1007/BF02757029.
[28] A. Mandal, S. Samanta, B. Ranjan Majhi. (2016). Phase transition and critical phenomena of black holes: A general approach. Physical Review D.94. DOI: 10.1007/BF02757029.
[29] Y. Liao, X.-B. Gong, J.-S. Wu. (2017). Phase-transition Theory of Kerr Black Holes in the Electromagnetic Field. The Astrophysical Journal.835(2):247. DOI: 10.1007/BF02757029.
[30] M. M. Caldarelli, G. Cognola, D. Klemm. (2000). Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Classical and Quantum Gravity.17(2):399-420. DOI: 10.1007/BF02757029.
[31] J. M. Bardeen, B. Carter, S. W. Hawking. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics.31:161-170. DOI: 10.1007/BF02757029.
[32] X.-X. Zeng, L.-F. Li. (2017). Van der Waals phase transition in the framework of holography. Physics Letters B.764:100-108. DOI: 10.1007/BF02757029.
[33] A. Belhaj, M. Chabab, H. El Moumni, K. Masmar. et al.(2016). On thermodynamics of AdS black holes in M-theory. The European Physical Journal C.76(73). DOI: 10.1007/BF02757029.
[34] A. Belhaj, M. Chabab, H. El Moumni, K. Masmar. et al.(2015). Maxwell’s equal-area law for Gauss–Bonnet–Anti-de Sitter black holes. The European Physical Journal C.75, article 71. DOI: 10.1007/BF02757029.
[35] A. Belhaj, M. Chabab, H. E. Moumni, M. B. Sedra. et al.(2012). On thermodynamics of AdS black holes in arbitrary dimensions. Chinese Physics Letters.29(10). DOI: 10.1007/BF02757029.
[36] P. Hut. (1977). Charged black holes and phase transitions. Monthly Notices of the Royal Astronomical Society.180:379-389. DOI: 10.1007/BF02757029.
[37] P. Pradhan. (2017). Thermodynamic Products in Extended Phase Space. International Journal of Modern Physics D.26(2). DOI: 10.1007/BF02757029.
[38] X.-B. Gong, Y. Liao, Z.-Y. Xu. (2016). A mathematical form of force-free magnetosphere equation around Kerr black holes and its application to Meissner effect. Physics Letters B.760:112-116. DOI: 10.1007/BF02757029.
[39] S. W. Hawking, D. N. Page. (1983). Thermodynamics of black holes in anti-de Sitter space. Communications in Mathematical Physics.87(4):577-588. DOI: 10.1007/BF02757029.
[40] M. Chabab, H. El Moumni, S. Iraoui, K. Masmar. et al.(2018). More insight into microscopic properties of RN-AdS black hole surrounded by quintessence via an alternative extended phase space. International Journal of Geometric Methods in Modern Physics.15(10). DOI: 10.1007/BF02757029.
[41] M.-S. Ma, R. Zhao, Y.-Q. Ma. (2017). Thermodynamic stability of black holes surrounded by quintessence. General Relativity and Gravitation.49:79. DOI: 10.1007/BF02757029.
[42] A. Mandal, R. Biswas. (2015). Effects of cosmic acceleration on black hole thermodynamics. Astrophysics and Space Science.357:8. DOI: 10.1007/BF02757029.
[43] P. C. W. Davies. (1977). The Thermodynamic Theory of Black Holes. Proceedings of the Royal Society of London Series A.353:499-521. DOI: 10.1007/BF02757029.
[44] A. Belhaj, M. Chabab, H. El Moumni, L. Medari. et al.(2013). The Thermodynamical Behaviors of Kerr—Newman AdS Black Holes. Chinese Physics Letters.30. DOI: 10.1007/BF02757029.
[45] E. Komatsu, K. M. Smith, J. Dunkley. (2011). Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: cosmological interpretation. The Astrophysical Journal.192(2):18. DOI: 10.1007/BF02757029.
[46] M. Chabab, H. El Moumni, K. Masmar. (2016). On thermodynamics of charged AdS black holes in extended phases space via M2-branes background. The European Physical Journal C.76:304. DOI: 10.1007/BF02757029.
[47] P. C. W. Davies. (1978). Thermodynamics of black holes. Reports on Progress in Physics.41(8):1313-1355. DOI: 10.1007/BF02757029.
[48] P. C. Davies. (1989). Thermodynamic phase transitions of Kerr-Newman black holes in de Sitter space. Classical and Quantum Gravity.6(12):1909-1914. DOI: 10.1007/BF02757029.
[49] B. B. Thomas, M. Saleh, T. C. Kofane. (2012). Thermodynamics and phase transition of the Reissner–Nordström black hole surrounded by quintessence. General Relativity and Gravitation.44(9):2181-2189. DOI: 10.1007/BF02757029.
文献评价指标
浏览 50次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次