首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2019 ,2019-02-03
Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge
Research Article
Jianjiang Zhu 1 Siquan Yu 2 , 3 Zhi Han 2 Yandong Tang 2 Chengdong Wu 3
Show affiliations
DOI:10.1155/2019/2892975
Received 2018-09-17, accepted for publication 2019-01-10, Published 2019-01-10
PDF
摘要

Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recognition ability on diverse types of objects. In this paper, we propose an underwater object detection and recognition method using a transformable template matching approach based on prior knowledge. Specifically, we first extract features and construct a template from sonar video sequences based on the analysis of acoustic shadows and highlight regions. Then, we identify the target region in the objective image by fast saliency detection techniques based on FFT, which can significantly improve efficiency by avoiding an exhaustive global search. After affine transformation of the template according to the orientation of the target, we extract normalized gradient features and calculate the similarity between the template and the target region, which can solve various difficulties mentioned above using only one template. Experimental results demonstrate that the proposed method can well recognize different underwater objects, such as mine-like objects and triangle-like objects and can satisfy the demands of real-time application.

授权许可

Copyright © 2019 Jianjiang Zhu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zhi Han.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China, cas.cn.hanzhi@sia.cn

推荐引用方式

Jianjiang Zhu,Siquan Yu,Zhi Han,Yandong Tang,Chengdong Wu. Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge. Mathematical Problems in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Hel-Or, H. Hel-Or, E. David. (2014). Matching by tone mapping: Photometric invariant template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence.36(2):317-330. DOI: 10.1016/j.sigpro.2017.07.022.
[2] X. D. Hou, L. Q. Zhang. Saliency detection: a spectral residual approach. :1-8. DOI: 10.1016/j.sigpro.2017.07.022.
[3] J.-H. Chen, C.-S. Chen, Y.-S. Chen. (2003). Fast algorithm for robust template matching with m-estimators. IEEE Transactions on Signal Processing.51(1):230-243. DOI: 10.1016/j.sigpro.2017.07.022.
[4] A. Sibiryakov. Fast and high-performance template matching method. :1417-1424. DOI: 10.1016/j.sigpro.2017.07.022.
[5] M. Mignotte, C. Collet, P. Pérez, P. Bouthemy. et al.(2000). Markov random field and fuzzy logic modeling in sonar imagery: application to the classification of underwater floor. Computer Vision and Image Understanding.79(1):4-24. DOI: 10.1016/j.sigpro.2017.07.022.
[6] L. A. Vese, T. F. Chan. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision.50(3):271-293. DOI: 10.1016/j.sigpro.2017.07.022.
[7] F. Guo, W. Wang, J. Shen, L. Shao. et al.(2018). Video Saliency Detection Using Object Proposals. IEEE Transactions on Cybernetics.48(11):3159-3170. DOI: 10.1016/j.sigpro.2017.07.022.
[8] T. Xi, W. Zhao, H. Wang, W. Lin. et al.(2017). Salient object detection with spatiotemporal background priors for video. IEEE Transactions on Image Processing.26(7):3425-3436. DOI: 10.1016/j.sigpro.2017.07.022.
[9] T. Celik, T. Tjahjadi. (2011). A novel method for sidescan sonar image segmentation. IEEE Journal of Oceanic Engineering.36(2):186-194. DOI: 10.1016/j.sigpro.2017.07.022.
[10] M. Mignotte, C. Collet, P. Pérez, P. Bouthemy. et al.(2000). Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Transactions on Image Processing.9(7):1216-1231. DOI: 10.1016/j.sigpro.2017.07.022.
[11] B. Lehmann, S. K. Ramanandan, K. Siantidis, D. Kraus. et al.Extended active contours approach for mine detection in synthetic aperture sonar images. .40, no 5:73-78. DOI: 10.1016/j.sigpro.2017.07.022.
[12] G. G. Acosta, S. A. Villar. (2015). Accumulated CA-CFAR Process in 2-D for Online Object Detection from Sidescan Sonar Data. IEEE Journal of Oceanic Engineering.40(3):558-569. DOI: 10.1016/j.sigpro.2017.07.022.
[13] Q. Lin, C. Ou. (2012). Tsallis entropy and the long-range correlation in image thresholding. Signal Processing.92(12):2931-2939. DOI: 10.1016/j.sigpro.2017.07.022.
[14] L. Zheng, K. Tian. (2018). Detection of small objects in sidescan sonar images based on POHMT and Tsallis entropy. Signal Processing.142:168-177. DOI: 10.1016/j.sigpro.2017.07.022.
[15] X. Wang, L. Guo, J. Yin, Z. Liu. et al.(2016). Narrowband Chan-Vese model of sonar image segmentation: A adaptive ladder initialization approach. Applied Acoustics.113:238-254. DOI: 10.1016/j.sigpro.2017.07.022.
[16] P. M. Rajeshwari, D. Rajapan, G. Kavitha, C. M. Sujatha. et al.Multilevel Tsallis entropy based segmentation for detection of object and shadow in SONAR images. .71, no. 2:1-5. DOI: 10.1016/j.sigpro.2017.07.022.
[17] T. Dekel, S. Oron, M. Rubinstein, S. Avidan. et al.Best-Buddies Similarity for robust template matching. :2021-2029. DOI: 10.1016/j.sigpro.2017.07.022.
[18] S. Korman, D. Reichman, G. Tsur, S. Avidan. et al.Fast-match: fast affine template matching. :2331-2338. DOI: 10.1016/j.sigpro.2017.07.022.
[19] I. Talmi, R. Mechrez, L. Zelnik-Manor. Template matching with deformable diversity similarity. :1311-1319. DOI: 10.1016/j.sigpro.2017.07.022.
[20] N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. :1063-6919. DOI: 10.1016/j.sigpro.2017.07.022.
[21] N. Kumar, U. Mitra, S. S. Narayanan. (2015). Robust Object Classification in Underwater Sidescan Sonar Images by Using Reliability-Aware Fusion of Shadow Features. IEEE Journal of Oceanic Engineering.40(3):592-606. DOI: 10.1016/j.sigpro.2017.07.022.
[22] E. Elboher, M. Werman. (2013). Asymmetric correlation: a noise robust similarity measure for template matching. IEEE Transactions on Image Processing.22(8):3062-3073. DOI: 10.1016/j.sigpro.2017.07.022.
文献评价指标
浏览 46次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次