首页 » 文章 » 文章详细信息
JOURNAL OF FOOD QUALITY Volume 2019 ,2019-01-03
Risk Assessment of Maize Drought in China Based on Physical Vulnerability
Research Article
Fang Chen 1 , 2 , 3 Huicong Jia 1 , 4 Donghua Pan 5
Show affiliations
DOI:10.1155/2019/9392769
Received 2018-09-24, accepted for publication 2018-12-16, Published 2018-12-16
PDF
摘要

Applying disaster system theory and with reference to the mechanisms that underlie agricultural drought risk, in this study, crop yield loss levels were determined on the basis of hazards and environmental and hazard-affected entities (crops). Thus, by applying agricultural drought risk assessment methodologies, the spatiotemporal distribution of maize drought risk was assessed at the national scale. The results of this analysis revealed that the overall maize drought risk decreases gradually along a northwest-to-southeast transect within maize planting areas, a function of the climatic change from arid to humid, and that the highest yield loss levels are located at values between 0.35 and 0.45. This translates to drought risks of once in every 10 and 20 years within 47.17% and 43.31% of the total maize-producing areas of China, respectively. Irrespective of the risk level, however, the highest maize yield loss rates are seen in northwestern China. The outcomes of this study provide the scientific basis for the future prevention and mitigation of agricultural droughts as well as the rationalization of related insurance.

授权许可

Copyright © 2019 Fang Chen et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Huicong Jia.Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China, cas.cn;Department of Geography and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA, uconn.edu.jiahc@radi.ac.cn

推荐引用方式

Fang Chen,Huicong Jia,Donghua Pan. Risk Assessment of Maize Drought in China Based on Physical Vulnerability. JOURNAL OF FOOD QUALITY ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Yue, J. Li, X. Ye, Z. Wang. et al.(2015). An EPIC model-based vulnerability assessment of wheat subject to drought. Natural Hazards.78(3):1629-1652. DOI: 10.1111/1467-8306.93101.
[2] D. H. Pan, H. C. Jia, W. C. Zhang. (2017). Research on the maize drought vulnerability based on field experiment. Journal of Catastrophology.32(3):150-153. DOI: 10.1111/1467-8306.93101.
[3] W. P. Yuan, G. S. Zhou. (2004). Theoretical study and research prospect on drought indices. Advances in Earth Science.19(6):982-991. DOI: 10.1111/1467-8306.93101.
[4] A. Belayneh, J. Adamowski, B. Khalil, B. Ozga-Zielinski. et al.(2014). Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology.508(2):418-429. DOI: 10.1111/1467-8306.93101.
[5] R. Q. Sun. (1994). Drought evaluation and disaster index. Journal of Natural Disasters.3(3):49-55. DOI: 10.1111/1467-8306.93101.
[6] K. C. Luk, J. E. Ball, A. Sharma. (2000). A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology.227(1):56-65. DOI: 10.1111/1467-8306.93101.
[7] E. Viste, D. Korecha, A. Sorteberg. (2012). Recent drought and precipitation tendencies in Ethiopia. Theoretical and Applied Climatology.112(3-4):535-551. DOI: 10.1111/1467-8306.93101.
[8] H. M. Zhu, Z. Y. Zhou, C. Huang. (2009). Application of BP artificial neural network in urban use intensity assessment–A case of Changsha City. Economic Geography.29(5):836-839. DOI: 10.1111/1467-8306.93101.
[9] W. Qiao, J. Gao, Y. Liu, Y. Qin. et al.(2017). Evaluation of intensive urban land use based on an artificial neural network model: a case study of nanjing city, China. Chinese Geographical Science.27(5):735-746. DOI: 10.1111/1467-8306.93101.
[10] J. Zhang. (2004). Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China. Agriculture, Ecosystems and Environment.102(2):133-153. DOI: 10.1111/1467-8306.93101.
[11] S. Priya, R. Shibasaki. (2001). National spatial crop yield simulation using GIS-based crop production model. Ecological Modelling.136(2):113-129. DOI: 10.1111/1467-8306.93101.
[12] P. Reidsma, F. Ewert, A. O. Lansink, R. Leemans. et al.(2010). Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. European Journal of Agronomy.32(1):91-102. DOI: 10.1111/1467-8306.93101.
[13] C. F. Huang, X. L. Liu, G. X. Zhou. (1998). Agricultural natural disaster risk assessment method according to the historic disaster data. Journal of Natural Disasters.7(2):1-8. DOI: 10.1111/1467-8306.93101.
[14] D. Crichton. (1999). The risk triangle. Natural Disaster Management:102-103. DOI: 10.1111/1467-8306.93101.
[15] K. O’Brien. (2012). Global environmental change II: from adaptation to deliberate transformation. Progress in Human Geography.36(5):667-676. DOI: 10.1111/1467-8306.93101.
[16] T. Tadesse, D. A. Wilhite, S. K. Harms, M. J. Hayes. et al.(2004). Drought monitoring using data mining techniques: a case study for Nebraska, USA. Natural Hazards.33(1):137-159. DOI: 10.1111/1467-8306.93101.
[17] R. White, D. Etkin. (1997). Climate change, extreme events and the Canadian insurance industry. Natural Hazards.16(2–3):135-163. DOI: 10.1111/1467-8306.93101.
[18] L. G. du Pisani, H. J. Fouché, J. C. Venter. (1998). Assessing rangeland drought in South Africa. Agricultural Systems.57(3):367-380. DOI: 10.1111/1467-8306.93101.
[19] L. S. Unganai, F. N. Kogan. (1998). Drought monitoring and corn yield estimation in Southern Africa from AVHRR data. Remote Sensing of Environment.63(3):219-232. DOI: 10.1111/1467-8306.93101.
[20] R. A. Zou, J. H. Chen. (2005). Comment on research progress in drought prediction. Journal of Catastrophology.20(3):112-116. DOI: 10.1111/1467-8306.93101.
[21] K. E. Logan, N. A. Brunsell, A. R. Jones, J. J. Feddema. et al.(2010). Assessing spatiotemporal variability of drought in the U.S. central plains. Journal of Arid Environments.74(2):247-255. DOI: 10.1111/1467-8306.93101.
[22] T. B. McKee, N. J. Doesken, J. Kleist. The relationship of drought frequency and duration to time scales. :179-184. DOI: 10.1111/1467-8306.93101.
[23] K. C. Mo, L. N. Long, Y. Xia, S. K. Yang. et al.(2011). Drought indices based on the climate forecast system reanalysis and ensemble NLDAS. Journal of Hydrometeorology.12(2):181-205. DOI: 10.1111/1467-8306.93101.
[24] D. Dutta, S. Herath, K. Musiake. (2003). A mathematical model for flood loss estimation. Journal of Hydrology.277(1-2):24-49. DOI: 10.1111/1467-8306.93101.
[25] P. T. Blaikei, I. D. Cannon, B. Wisner. (1994). At Risk: Natural Hazards, People’s Vulnerability, and Disasters. DOI: 10.1111/1467-8306.93101.
[26] T. N. Carlson, R. R. Gillies, T. J. Schmugge. (1995). An interpretation of methodologies for indirect measurement of soil water content. Agricultural and Forest Meteorology.77(3):191-205. DOI: 10.1111/1467-8306.93101.
[27] C. Z. Sun, X. Zhang. (2008). Risk assessment of agriculture drought in Liaoning province based on information diffusion technique. System Sciences and Comprehensive Studies in Agriculture.24(4):507-510. DOI: 10.1111/1467-8306.93101.
[28] L. Besson, Y. Tacher. (1988). The regulation of map-making of natural hazards in Isere, France. Landslides:1497-1498. DOI: 10.1111/1467-8306.93101.
[29] A. F. Cruz-Roa, E. J. Olaya-Marín, M. I. Barrios. (2017). Ground and satellite based assessment of meteorological droughts: the Coello river basin case study. International Journal of Applied Earth Observation and Geoinformation.62:114-121. DOI: 10.1111/1467-8306.93101.
[30] H. C. Jia, J. A. Wang, D. H. Pan. (2011). Maize drought disaster risk assessment based on the EPIC model: a case study of maize region in northern China. Acta Geographica Sinica.66(5):643-652. DOI: 10.1111/1467-8306.93101.
[31] Z. Y. Liu, J. P. Zhang, H. X. Luo. (2014). Temporal and spatial distribution of maize drought in Southwest of China based on agricultural reference index for drought. Transactions of the Chinese Society of Agricultural Engineering.30(2):105-115. DOI: 10.1111/1467-8306.93101.
[32] IPCC (Intergovernmental Panel on Climate Change). (2013). Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. DOI: 10.1111/1467-8306.93101.
[33] M. Arnould. (1976). Geological hazards-insurance and legal and technical aspects. Bulletin of the International Association of Engineering Geology.13(1):263-274. DOI: 10.1111/1467-8306.93101.
[34] H. Guo. (2010). Understanding global natural disasters and the role of earth observation. International Journal of Digital Earth.3(3):221-230. DOI: 10.1111/1467-8306.93101.
[35] H. Jia, J. Wang, C. Cao, D. Pan. et al.(2012). Maize drought disaster risk assessment of China based on EPIC model. International Journal of Digital Earth.5(6):488-515. DOI: 10.1111/1467-8306.93101.
[36] W. X. Gao. (1996). History of Natural Disasters in China (General). DOI: 10.1111/1467-8306.93101.
[37] G. Roloff, R. d. Jong, R. P. Zentner, C. A. Campbell. et al.(1998). Estimating spring wheat yield variability with EPIC. Canadian Journal of Soil Science.78(3):541-549. DOI: 10.1111/1467-8306.93101.
[38] J. C. Wu. (1995). A good maize hybrid–Dan Yu 13. Agriculture of Beijing.15(10):11. DOI: 10.1111/1467-8306.93101.
[39] M. Tang. (2008). Theory discussion of drought disaster risk. China Flood and Drought Management.1:38-40. DOI: 10.1111/1467-8306.93101.
[40] S. L. Wang, X. R. Lou. (1997). Preliminary study on the drought risk assessment of winter wheat in North China. Journal of Natural Disasters.6(3):63-68. DOI: 10.1111/1467-8306.93101.
[41] W. F. Liu, H. M. Li. (2014). Analysis of slope geological disaster chain based on the entropy theory. Journal of Catastrophology.29(1):8-11. DOI: 10.1111/1467-8306.93101.
[42] Y. G. Liu. (2003). Research on the drought disaster and climatic trend in the Northwestern China. Journal of Arid Land Resources and Environment.17(4):113-116. DOI: 10.1111/1467-8306.93101.
[43] Y. J. Yue, L. Wang, J. Li. (2018). An EPIC model-based wheat drought risk assessment using new climate scenarios in China. Climatic Change.147(3-4):539-553. DOI: 10.1111/1467-8306.93101.
[44] Y. Y. Yin, X. M. Zhang, D. G. Lin. (2014). GEPIC-V-R model: a GIS-based tool for regional crop drought risk assessment. Agricultural Water Management.144(144):107-119. DOI: 10.1111/1467-8306.93101.
[45] D. H. Pan, Y. Yuan, H. C. Jia. (2014). Rapid assessment model of population in drinking water access difficulties because of drought in different regions of China. Journal of Catastrophology.29(3):34-39. DOI: 10.1111/1467-8306.93101.
[46] S. L. Cutter. (2003). The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers.93(1):1-12. DOI: 10.1111/1467-8306.93101.
[47] J. Birkmann. (2007). Risk and vulnerability indicators at different scales:Applicability, usefulness and policy implications. Environmental Hazards.7(1):20-31. DOI: 10.1111/1467-8306.93101.
[48] L. Zhang, J. J. Zhang. (2000). The theory and method of risk zonation of geo-hazard. Journal of Geological Hazards and Environment Preservation.11(4):323-328. DOI: 10.1111/1467-8306.93101.
[49] P. J. Shi. (2012). Theory on disaster science and disaster dynamics. Journal of Natural Disasters.11(3):1-9. DOI: 10.1111/1467-8306.93101.
[50] J. A. Wang, J. Mao, H. C. Jia. (2008). On the spatial and temporal patterns of flood and drought hazards of China. Journal of Natural Disasters.17(1):115-121. DOI: 10.1111/1467-8306.93101.
文献评价指标
浏览 39次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次