首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2018 ,2018-12-26
Numerical Investigations on Residual Stress in Laser Penetration Welding Process of Ultrafine-Grained Steel
Research Article
Dezheng Liu 1 Yan Li 1 Haisheng Liu 1 Zhongren Wang 1 Yu Wang 2
Show affiliations
DOI:10.1155/2018/8609325
Received 2018-06-27, accepted for publication 2018-11-29, Published 2018-11-29
PDF
摘要

Weld solidification crack prevention in the laser penetration welding process is essential for the strength of the welded component. The formation of solidification cracks can ultimately be attributed to welding residual stresses, and preventive measures should be taken during welding. In this study, the effects of residual stresses on the laser penetration welding quality of ultrafine-grained steels were investigated. A heat source model was established through the analysis of the metallography of the cross section of the heat-affected zone (HAZ) of ultrafine-grained AN420s-grade steel, and the chemical composition of the weld bead was obtained using an FLS980-stm Edinburgh fluorescence spectrometer. Furthermore, the constitutive coupling relation between the temperature and material flow stress was established based on the Gibbs function, and the welding residual stress was obtained by setting trace points in a finite element analysis (FEA) model based on experimental data of the weld bead cross section under different welding conditions. The results show that weld solidification cracks will form when the residual stresses exceed the material flow stresses in the weld bead, and the residual stresses can be decreased through a reasonable increase of the welding speed. The results indicate that the proposed criterion has high accuracy and can be used to predict the formation of weld solidification cracks in the laser penetration welding process.

授权许可

Copyright © 2018 Dezheng Liu et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Haisheng Liu.Department of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China, hbuas.edu.cn.185669911@qq.com

推荐引用方式

Dezheng Liu,Yan Li,Haisheng Liu,Zhongren Wang,Yu Wang. Numerical Investigations on Residual Stress in Laser Penetration Welding Process of Ultrafine-Grained Steel. Advances in Materials Science and Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] A. Belitzki, M. F. Zaeh. (2016). Accuracy of calculated component distortions using the weld pool length to calibrate the heat source. Journal of Laser Applications.28(2). DOI: 10.1007/s00170-016-8732-z.
[2] J. Ahn, E. He, L. Chen. (2018). Fem prediction of welding residual stresses in fibre laser-welded aa 2024-t3 and comparison with experimental measurement. International Journal of Advanced Manufacturing Technology.95(5):1-21. DOI: 10.1007/s00170-016-8732-z.
[3] M. Sheikhi, F. Malek Ghaini, H. Assadi. (2015). Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloy. Acta Materialia.82:491-502. DOI: 10.1007/s00170-016-8732-z.
[4] G. Pastras, A. Fysikopoulos, C. Giannoulis, G. Chryssolouris. et al.(2014). A numerical approach to modeling keyhole laser welding. The International Journal of Advanced Manufacturing Technology.78(5–8):723-736. DOI: 10.1007/s00170-016-8732-z.
[5] S. Chen, D. Yang, M. Li. (2016). Laser penetration welding of an overlap titanium-on-aluminum configuration. International Journal of Advanced Manufacturing Technology.87(9–12):3069-3079. DOI: 10.1007/s00170-016-8732-z.
[6] L. Zhang, J. Zhang, G. Zhang, W. Bo. et al.(2011). An investigation on the effects of side assisting gas flow and metallic vapour jet on the stability of keyhole and molten pool during laser full-penetration welding. Journal of Physics D: Applied Physics.44(13):135-201. DOI: 10.1007/s00170-016-8732-z.
[7] A. Fadaei, H. Mokhtari. (2015). Finite element modeling and experimental study of residual stresses in repair butt weld of ST-37 plates. Iranian Journal of Science & Technology Transactions of Mechanical Engineering.39:291-307. DOI: 10.1007/s00170-016-8732-z.
[8] H. L. Wei, J. J. Blecher, T. A. Palmer, T. Debroy. et al.(2015). Fusion zone microstructure and geometry in complete-joint-penetration laser-arc hybrid welding of low-alloy steel. Welding Journal.94(4):135-144. DOI: 10.1007/s00170-016-8732-z.
[9] X. Li, F. Lu, H. Cui, X. Tang. et al.(2014). Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with t-joint. The International Journal of Advanced Manufacturing Technology.72(1–4):241-254. DOI: 10.1007/s00170-016-8732-z.
[10] Z. Dong, M. A. Rui, W. Yong, X. Zhan. et al.(2011). Post-data treatment design of software package for three dimensional simulation and prediction of weld solidification cracks. Transactions of the China Welding Institution.32(3):17-20. DOI: 10.1007/s00170-016-8732-z.
[11] Y. Zhang, F. Li, Z. Liang, Y. Ying. et al.(2018). Correlation analysis of penetration based on keyhole and plasma plume in laser welding. Journal of Materials Processing Technology.256:1-12. DOI: 10.1007/s00170-016-8732-z.
[12] C. C. Zhao, W. N. Li, Z. B. Liu. (2003). Laser welding of ultra-fine grained steel ss400. Journal of Iron and Steel Research (International).10(3):32-36. DOI: 10.1007/s00170-016-8732-z.
[13] C. Lee, H. Park, J. Yoo, C. Lee. et al.(2015). Residual stress and crack initiation in laser clad composite layer with co-based alloy and wc + nicr. Applied Surface Science.345:286-294. DOI: 10.1007/s00170-016-8732-z.
[14] P. Layus, P. Kah, A. Zisman, M. Pirinen. et al.(2016). Recrystallization-based formation of uniform fine-grained austenite structure before polymorphic transition in high-strength steels for arctic applications. International Journal of Mechanical & Materials Engineering.11(1):1-7. DOI: 10.1007/s00170-016-8732-z.
[15] H. Halfa. (2014). Recent trends in producing ultrafine grained steels. Journal of Minerals and Materials Characterization and Engineering.2(5):428-469. DOI: 10.1007/s00170-016-8732-z.
[16] L.-J. Zhang, G.-F. Zhang, X.-Y. Bai, J. Ning. et al.(2016). Effect of the process parameters on the three-dimensional shape of molten pool during full-penetration laser welding process. The International Journal of Advanced Manufacturing Technology.86(5–8):1273-1286. DOI: 10.1007/s00170-016-8732-z.
[17] J. Volpp. (2012). Investigation on the influence of different laser beam intensity distributions on keyhole geometry during laser welding. Physics Procedia.39(9):17-26. DOI: 10.1007/s00170-016-8732-z.
[18] E.-J. Chun, H. Baba, K. Nishimoto, K. Saida. et al.(2015). Development of laser beam welding transverse-varestraint test for assessment of solidification cracking susceptibility in laser welds. Metals and Materials International.21(3):543-553. DOI: 10.1007/s00170-016-8732-z.
[19] S. A. English, N. K. Arakere. (2011). Effects of the strain-hardening exponent on two-parameter characterizations of surface-cracks under large-scale yielding. International Journal of Plasticity.27(6):920-939. DOI: 10.1007/s00170-016-8732-z.
[20] J. Volpp, F. Vollertsen. (2014). Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. Production Engineering.9(2):167-178. DOI: 10.1007/s00170-016-8732-z.
[21] J. Gernert, A. Jäger, R. Span. (2014). Calculation of phase equilibria for multi-component mixtures using highly accurate helmholtz energy equations of state. Fluid Phase Equilibria.375(31):209-218. DOI: 10.1007/s00170-016-8732-z.
[22] M. Shibara, H. Serizawa, H. Murakawa. (2000). Finite element method for hot cracking using temperature dependent interface element (Report II). Trans JWRI.29(1):59-64. DOI: 10.1007/s00170-016-8732-z.
[23] M. R. Frewin, D. A. Scott. (1999). Finite element model of pulsed laser welding. Welding Research Supplment.78:15-22. DOI: 10.1007/s00170-016-8732-z.
[24] R. A. Sindhu, M. K. Park, S. J. Lee, K. D. Lee. et al.(2010). Effects of residual stresses on the static and fatigue strength of laser-welded lap joints with different welding speeds. International Journal of Automotive Technology.11(6):857-863. DOI: 10.1007/s00170-016-8732-z.
[25] Q. D. Sun, L. I. Meng-Sheng, R. W. Song. (2010). Research on a new type of heat source model on laser deep welding. Welding Technology.39(12):11-14. DOI: 10.1007/s00170-016-8732-z.
[26] G. L. Qin, X. B. Qi, Y. B. Yang, X. Y. Wang. et al.(2004). Acquisition and processing of coaxial image of molten pool and keyhole in nd:yag laser welding with high power. China Welding.13(1):51-55. DOI: 10.1007/s00170-016-8732-z.
[27] C. Lampa, A. F. H. Kaplan, J. Powell, C. Magnusson. et al.(1999). An analytical thermodynamic model of laser welding. Journal of Physics D: Applied Physics.30(9):1293-1299. DOI: 10.1007/s00170-016-8732-z.
文献评价指标
浏览 61次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 0次