首页 » 文章 » 文章详细信息
Stem Cells International Volume 2019 ,2019-01-15
Head to Knee: Cranial Neural Crest-Derived Cells as Promising Candidates for Human Cartilage Repair
Review Article
Ihsène Taïhi 1 , 2 Ali Nassif 1 , 3 , 4 , 5 Juliane Isaac 1 Benjamin Philippe Fournier 1 , 6 François Ferré 1 , 2
Show affiliations
Received 2018-07-04, accepted for publication 2018-12-06, Published 2018-12-06

A large array of therapeutic procedures is available to treat cartilage disorders caused by trauma or inflammatory disease. Most are invasive and may result in treatment failure or development of osteoarthritis due to extensive cartilage damage from repeated surgery. Despite encouraging results of early cell therapy trials that used chondrocytes collected during arthroscopic surgery, these approaches have serious disadvantages, including morbidity associated with cell harvesting and low predictive clinical outcomes. To overcome these limitations, adult stem cells derived from bone marrow and subsequently from other tissues are now considered as preferred sources of cells for cartilage regeneration. Moreover, with new evidence showing that the choice of cell source is one of the most important factors for successful cell therapy, there is growing interest in neural crest-derived cells in both the research and clinical communities. Neural crest-derived cells such as nasal chondrocytes and oral stem cells that exhibit chondrocyte-like properties seem particularly promising in cartilage repair. Here, we review the types of cells currently available for cartilage cell therapy, including articular chondrocytes and various mesenchymal stem cells, and then highlight recent developments in the use of neural crest-derived chondrocytes and oral stem cells for repair of cartilage lesions.


Copyright © 2019 Ihsène Taïhi et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Ali Nassif.Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Cordeliers Research Center, Universites of Paris-Descartes, Pierre and Marie Curie and Paris-Diderot, 15 rue de l’école de médecine, Paris, France, inserm.fr;AP-HP, Bretonneau Hospital, Dental Department, Paris 75018, France, aphp.fr;Mondor Institute for Biomedical Research (IMRB), INSERM U955, Team 5, Faculty of Medicine, University of Paris-EST, Créteil, France, inserm.fr;Laboratory of Pharmacology of Cerebral Circulation, EA4475, Faculty of Pharmacy, University of Paris Descartes, France, univ-paris5.fr.dent4world@gmail.com


Ihsène Taïhi,Ali Nassif,Juliane Isaac,Benjamin Philippe Fournier,François Ferré. Head to Knee: Cranial Neural Crest-Derived Cells as Promising Candidates for Human Cartilage Repair. Stem Cells International ,Vol.2019(2019)



[1] B. P. Fournier, University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, 2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3 Canada, L. S. Loison-Robert, F. C. Ferré. et al.(2016). Characterisation of human gingival neural crest-derived stem cells in monolayer and neurosphere cultures. European Cells & Materials.31:40-58. DOI: 10.1016/S0065-1281(88)80056-4.
[2] K. Marynka-Kalmani, S. Treves, M. Yafee, H. Rachima. et al.(2010). The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells.28(5):984-995. DOI: 10.1016/S0065-1281(88)80056-4.
[3] A. Nassif, I. Senussi, F. Meary, S. Loiodice. et al.(2014). Msx1 role in craniofacial bone morphogenesis. Bone.66:96-104. DOI: 10.1016/S0065-1281(88)80056-4.
[4] H. Yang, L. N. Gao, Y. An, C. H. Hu. et al.(2013). Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials.34(29):7033-7047. DOI: 10.1016/S0065-1281(88)80056-4.
[5] S. Choi, G. M. Kim, Y. H. Maeng, H. Kang. et al.(2017). Autologous bone marrow cell stimulation and allogenic chondrocyte implantation for the repair of full-thickness articular cartilage defects in a rabbit model. Cartilage.9(4):402-409. DOI: 10.1016/S0065-1281(88)80056-4.
[6] H. B. Schuette, M. J. Kraeutler, E. C. McCarty. (2017). Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthopaedic Journal of Sports Medicine.5(6). DOI: 10.1016/S0065-1281(88)80056-4.
[7] S. Lyman, N. Nakamura, B. J. Cole, C. Erggelet. et al.(2016). Cartilage-repair innovation at a standstill: methodologic and regulatory pathways to breaking free. The Journal of Bone and Joint Surgery.98(15):e63. DOI: 10.1016/S0065-1281(88)80056-4.
[8] D. L. Alge, D. Zhou, L. L. Adams, B. K. Wyss. et al.(2010). Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. Journal of Tissue Engineering and Regenerative Medicine.4(1):73-81. DOI: 10.1016/S0065-1281(88)80056-4.
[9] S. S. Hakki, S. A. Kayis, E. E. Hakki, S. B. Bozkurt. et al.(2015). Comparison of mesenchymal stem cells isolated from pulp and periodontal ligament. Journal of Periodontology.86(2):283-291. DOI: 10.1016/S0065-1281(88)80056-4.
[10] J. Isaac, A. Nassif, A. Asselin, I. Taïhi. et al.(2018). Involvement of neural crest and paraxial mesoderm in oral mucosal development and healing. Biomaterials.172:41-53. DOI: 10.1016/S0065-1281(88)80056-4.
[11] B. K. Hall. (2000). The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evolution & Development.2(1):3-5. DOI: 10.1016/S0065-1281(88)80056-4.
[12] L. C. Gerstenfeld, J. Cruceta, C. M. Shea, K. Sampath. et al.(2002). Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. Journal of Bone and Mineral Research.17(2):221-230. DOI: 10.1016/S0065-1281(88)80056-4.
[13] M. Nomoto, Y. Nomoto, Y. Tada, A. Tani. et al.(2013). Bioengineered trachea using autologous chondrocytes for regeneration of tracheal cartilage in a rabbit model. The Laryngoscope.123(9):2195-2201. DOI: 10.1016/S0065-1281(88)80056-4.
[14] J. Dai, J. Wang, J. Lu, D. Zou. et al.(2012). The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials.33(31):7699-7711. DOI: 10.1016/S0065-1281(88)80056-4.
[15] C. L. Nemeth, K. Janebodin, A. E. Yuan, J. E. Dennis. et al.(2014). Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Engineering Part A.20(21-22):2817-2829. DOI: 10.1016/S0065-1281(88)80056-4.
[16] H. Yanaga, K. Imai, T. Fujimoto, K. Yanaga. et al.(2009). Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plastic and Reconstructive Surgery.124(3):817-825. DOI: 10.1016/S0065-1281(88)80056-4.
[17] K. Iohara, L. Zheng, M. Ito, A. Tomokiyo. et al.(2006). Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells.24(11):2493-2503. DOI: 10.1016/S0065-1281(88)80056-4.
[18] K. Pelttari, M. Mumme, A. Barbero, I. Martin. et al.(2017). Nasal chondrocytes as a neural crest-derived cell source for regenerative medicine. Current Opinion in Biotechnology.47:1-6. DOI: 10.1016/S0065-1281(88)80056-4.
[19] L. Pierdomenico, L. Bonsi, M. Calvitti, D. Rondelli. et al.(2005). Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation.80(6):836-842. DOI: 10.1016/S0065-1281(88)80056-4.
[20] A. Rizk, A. B. M. Rabie. (2013). Human dental pulp stem cells expressing transforming growth factor 3 transgene for cartilage-like tissue engineering. Cytotherapy.15(6):712-725. DOI: 10.1016/S0065-1281(88)80056-4.
[21] G. W. Calloni, N. M. Le Douarin, E. Dupin. (2009). High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities. Proceedings of the National Academy of Sciences of the United States of America.106(22):8947-8952. DOI: 10.1016/S0065-1281(88)80056-4.
[22] M. Sieber-Blum, M. Grim, Y. F. Hu, V. Szeder. et al.(2004). Pluripotent neural crest stem cells in the adult hair follicle. Developmental Dynamics.231(2):258-269. DOI: 10.1016/S0065-1281(88)80056-4.
[23] S. Gronthos, J. Brahim, W. Li, L. W. Fisher. et al.(2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research.81(8):531-535. DOI: 10.1016/S0065-1281(88)80056-4.
[24] M. Miura, S. Gronthos, M. Zhao, B. Lu. et al.(2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences.100(10):5807-5812. DOI: 10.1016/S0065-1281(88)80056-4.
[25] K. L. Caldwell, J. Wang. (2015). Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthritis and Cartilage.23(3):351-362. DOI: 10.1016/S0065-1281(88)80056-4.
[26] J. O'Sullivan, S. D'Arcy, F. P. Barry, J. Murphy. et al.(2011). Mesenchymal chondroprogenitor cell origin and therapeutic potential. Stem Cell Research & Therapy.2(1):8. DOI: 10.1016/S0065-1281(88)80056-4.
[27] M. Marędziak, K. Marycz, K. A. Tomaszewski, K. Kornicka. et al.(2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International.2016-15. DOI: 10.1016/S0065-1281(88)80056-4.
[28] S. H. Hsu, G. S. Huang, S. Y. F. Lin, F. Feng. et al.(2012). Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Engineering Part A.18(1-2):67-79. DOI: 10.1016/S0065-1281(88)80056-4.
[29] A. Moshaverinia, X. Xu, C. Chen, K. Akiyama. et al.(2013). Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomaterialia.9(12):9343-9350. DOI: 10.1016/S0065-1281(88)80056-4.
[30] F. C. Ferré, H. Larjava, L.-S. Loison-Robert, T. Berbar. et al.(2014). Formation of cartilage and synovial tissue by human gingival stem cells. Stem Cells and Development.23(23):2895-2907. DOI: 10.1016/S0065-1281(88)80056-4.
[31] H. Koga, T. Muneta, T. Nagase, A. Nimura. et al.(2008). Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell and Tissue Research.333(2):207-215. DOI: 10.1016/S0065-1281(88)80056-4.
[32] M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson. et al.(1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine.331(14):889-895. DOI: 10.1016/S0065-1281(88)80056-4.
[33] D. J. Huey, J. C. Hu, K. A. Athanasiou. (2012). Unlike bone, cartilage regeneration remains elusive. Science.338(6109):917-921. DOI: 10.1016/S0065-1281(88)80056-4.
[34] Y. Ogata, Y. Mabuchi, M. Yoshida, E. G. Suto. et al.(2015). Purified human synovium mesenchymal stem cells as a good resource for cartilage regeneration. PloS One.10(6, article e0129096). DOI: 10.1016/S0065-1281(88)80056-4.
[35] I. Taïhi, A. Nassif, T. Berbar, J. Isaac. et al.(2016). Validation of housekeeping genes to study human gingival stem cells and their in vitro osteogenic differentiation using real-time RT-qPCR. Stem Cells International.2016-17. DOI: 10.1016/S0065-1281(88)80056-4.
[36] B.-M. Seo, M. Miura, S. Gronthos, P. Mark Bartold. et al.(2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet.364(9429):149-155. DOI: 10.1016/S0065-1281(88)80056-4.
[37] M. Masaracchio, W. J. Hanney, X. Liu, M. Kolber. et al.(2017). Timing of rehabilitation on length of stay and cost in patients with hip or knee joint arthroplasty: a systematic review with meta-analysis. PLoS One.12(6, article e0178295). DOI: 10.1016/S0065-1281(88)80056-4.
[38] A. E. Nelson, K. D. Allen, Y. M. Golightly, A. P. Goode. et al.(2014). A systematic review of recommendations and guidelines for the management of osteoarthritis: the chronic osteoarthritis management initiative of the US bone and joint initiative. Seminars in Arthritis and Rheumatism.43(6):701-712. DOI: 10.1016/S0065-1281(88)80056-4.
[39] G. Filardo, F. Perdisa, A. Roffi, M. Marcacci. et al.(2016). Stem cells in articular cartilage regeneration. Journal of Orthopaedic Surgery and Research.11(1):42. DOI: 10.1016/S0065-1281(88)80056-4.
[40] D. Aletaha, T. Neogi, A. J. Silman, J. Funovits. et al.(2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism.62(9):2569-2581. DOI: 10.1016/S0065-1281(88)80056-4.
[41] H. Y. Yeh, T. Y. Lin, C. H. Lin, B. L. Yen. et al.(2013). Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds. Differentiation.86(4-5):171-183. DOI: 10.1016/S0065-1281(88)80056-4.
[42] Y. Jiang, R. S. Tuan. (2015). Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nature Reviews Rheumatology.11(4):206-212. DOI: 10.1016/S0065-1281(88)80056-4.
[43] J. J. Montesinos, E. Flores-Figueroa, S. Castillo-Medina, P. Flores-Guzmán. et al.(2009). Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy.11(2):163-176. DOI: 10.1016/S0065-1281(88)80056-4.
[44] R. d'Aquino, V. Tirino, V. Desiderio, M. Studer. et al.(2011). Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. European Cells & Materials.21:304-316. DOI: 10.1016/S0065-1281(88)80056-4.
[45] C. R. Fellows, C. Matta, R. Zakany, I. M. Khan. et al.(2016). Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Frontiers in Genetics.7. DOI: 10.1016/S0065-1281(88)80056-4.
[46] Y.-G. Koh, O. R. Kwon, Y. S. Kim, Y. J. Choi. et al.(2016). Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy.32(1):97-109. DOI: 10.1016/S0065-1281(88)80056-4.
[47] P. Leucht, J. B. Kim, R. Amasha, A. W. James. et al.(2008). Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development.135(17):2845-2854. DOI: 10.1016/S0065-1281(88)80056-4.
[48] B. P. J. Fournier, H. Larjava, L. Häkkinen. (2013). Gingiva as a source of stem cells with therapeutic potential. Stem Cells and Development.22(24):3157-3177. DOI: 10.1016/S0065-1281(88)80056-4.
[49] Q. Zhang, S. Shi, Y. Liu, J. Uyanne. et al.(2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology.183(12):7787-7798. DOI: 10.1016/S0065-1281(88)80056-4.
[50] Q. Z. Zhang, W. R. Su, S. H. Shi, P. Wilder-Smith. et al.(2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells.28(10):1856-1868. DOI: 10.1016/S0065-1281(88)80056-4.
[51] Q. Zhang, A. L. Nguyen, S. Shi, C. Hill. et al.(2012). Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells and Development.21(6):937-947. DOI: 10.1016/S0065-1281(88)80056-4.
[52] M. Chen, W. Su, X. Lin, Z. Guo. et al.(2013). Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis and Rheumatism.65(5):1181-1193. DOI: 10.1016/S0065-1281(88)80056-4.
[53] A. G. Tay, J. Farhadi, R. Suetterlin, G. Pierer. et al.(2004). Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Engineering.10(5-6):762-770. DOI: 10.1016/S0065-1281(88)80056-4.
[54] A.-M. Freyria, F. Mallein-Gerin. (2012). Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury.43(3):259-265. DOI: 10.1016/S0065-1281(88)80056-4.
[55] S. Wakitani, K. Imoto, T. Yamamoto, M. Saito. et al.(2002). Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis and Cartilage.10(3):199-206. DOI: 10.1016/S0065-1281(88)80056-4.
[56] J. Farhadi, I. Fulco, S. Miot, D. Wirz. et al.(2006). Precultivation of engineered human nasal cartilage enhances the mechanical properties relevant for use in facial reconstructive surgery. Annals of Surgery.244(6):978-985. DOI: 10.1016/S0065-1281(88)80056-4.
[57] M. Crisan, S. Yap, L. Casteilla, C. W. Chen. et al.(2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell.3(3):301-313. DOI: 10.1016/S0065-1281(88)80056-4.
[58] W.’e. Kafienah, M. Jakob, O. Démarteau, A. Frazer. et al.(2002). Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Engineering.8(5):817-826. DOI: 10.1016/S0065-1281(88)80056-4.
[59] L. Ding, T. L. Saunders, G. Enikolopov, S. J. Morrison. et al.(2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature.481(7382):457-462. DOI: 10.1016/S0065-1281(88)80056-4.
[60] S. Kagimoto, T. Takebe, S. Kobayashi, Y. Yabuki. et al.(2016). Autotransplantation of monkey ear perichondrium-derived progenitor cells for cartilage reconstruction. Cell Transplantation.25(5):951-962. DOI: 10.1016/S0065-1281(88)80056-4.
[61] A. Stevens, T. Zuliani, C. Olejnik, H. LeRoy. et al.(2008). Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells and Development.17(6):1175-1184. DOI: 10.1016/S0065-1281(88)80056-4.
[62] Y. Chai, X. Jiang, Y. Ito, P. Bringas. et al.(2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development.127(8):1671-1679. DOI: 10.1016/S0065-1281(88)80056-4.
[63] K. Umeda, H. Oda, Q. Yan, N. Matthias. et al.(2015). Long-term expandable SOX9+ chondrogenic ectomesenchymal cells from human pluripotent stem cells. Stem Cell Reports.4(4):712-726. DOI: 10.1016/S0065-1281(88)80056-4.
[64] R. Chijimatsu, M. Ikeya, Y. Yasui, Y. Ikeda. et al.(2017). Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells International.2017-18. DOI: 10.1016/S0065-1281(88)80056-4.
[65] S. Choi, T. J. Cho, S. K. Kwon, G. Lee. et al.(2013). Chondrogenesis of periodontal ligament stem cells by transforming growth factor-3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. International Journal of Oral Science.5(1):7-13. DOI: 10.1016/S0065-1281(88)80056-4.
[66] Y. Kfoury, D. T. Scadden. (2015). Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell.16(3):239-253. DOI: 10.1016/S0065-1281(88)80056-4.
[67] C. Morsczeck, W. Götz, J. Schierholz, F. Zeilhofer. et al.(2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology.24(2):155-165. DOI: 10.1016/S0065-1281(88)80056-4.
[68] B. Sacchetti, A. Funari, S. Michienzi, S. di Cesare. et al.(2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell.131(2):324-336. DOI: 10.1016/S0065-1281(88)80056-4.
[69] J. Guo, J. Q. Weng, Q. Rong, X. Zhang. et al.(2015). Investigation of multipotent postnatal stem cells from human maxillary sinus membrane. Scientific Reports.5(1). DOI: 10.1016/S0065-1281(88)80056-4.
[70] F. Wolf, Departments of Surgery and of Biomedicine, University Hospital, Basel, Switzerland, C. Candrian, D. Wendt. et al.(2008). Cartilage tissue engineering using pre-aggregated human articular chondrocytes. European Cells & Materials.16:92-99. DOI: 10.1016/S0065-1281(88)80056-4.
[71] B. P. J. Fournier, F. C. Ferre, L. Couty, J.-J. Lataillade. et al.(2010). Multipotent progenitor cells in gingival connective tissue. Tissue Engineering Part A.16(9):2891-2899. DOI: 10.1016/S0065-1281(88)80056-4.
[72] A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, G. P. Frolova. et al.(1968). Heterotopic transplants of bone marrow. Transplantation.6(2):230-247. DOI: 10.1016/S0065-1281(88)80056-4.
[73] A. Arthur, G. Rychkov, S. Shi, S. A. Koblar. et al.(2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells.26(7):1787-1795. DOI: 10.1016/S0065-1281(88)80056-4.
[74] J. G. Toma, M. Akhavan, K. J. L. Fernandes, F. Barnabé-Heider. et al.(2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology.3(9):778-784. DOI: 10.1016/S0065-1281(88)80056-4.
[75] L. S. Lohmander. (1990). Cartilage markers in joint fluid in human osteoarthritis. Cartilage Changes in Osteoarthritis:98-104. DOI: 10.1016/S0065-1281(88)80056-4.
[76] N. Nagoshi, S. Shibata, Y. Kubota, M. Nakamura. et al.(2008). Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell.2(4):392-403. DOI: 10.1016/S0065-1281(88)80056-4.
[77] L. S. Lohmander, L. Dahlberg, L. Ryd, D. Heinegård. et al.(1989). Increased levels of proteoglycan fragments in knee joint fluid after injury. Arthritis & Rheumatism.32(11):1434-1442. DOI: 10.1016/S0065-1281(88)80056-4.
[78] Z.-l. Hou, Y. Liu, X. H. Mao, C. Y. Wei. et al.(2014). Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adhesion & Migration.7(5):404-407. DOI: 10.1016/S0065-1281(88)80056-4.
[79] Y. Matsusue, T. Yamamuro, H. Hama. (1993). Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy: The Journal of Arthroscopic & Related Surgery.9(3):318-321. DOI: 10.1016/S0065-1281(88)80056-4.
[80] A. T. Mehlhorn, P. Niemeyer, S. Kaiser, G. Finkenzeller. et al.(2006). Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Engineering.12(10):2853-2862. DOI: 10.1016/S0065-1281(88)80056-4.
[81] I. Fulco, S. Miot, M. D. Haug, A. Barbero. et al.(2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. The Lancet.384(9940):337-346. DOI: 10.1016/S0065-1281(88)80056-4.
[82] A. M. Mackay, S. C. Beck, J. M. Murphy, F. P. Barry. et al.(1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering.4(4):415-428. DOI: 10.1016/S0065-1281(88)80056-4.
[83] T. Vinardell, E. J. Sheehy, C. T. Buckley, D. J. Kelly. et al.(2012). A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Engineering Part A.18(11-12):1161-1170. DOI: 10.1016/S0065-1281(88)80056-4.
[84] M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal. et al.(1999). Multilineage potential of adult human mesenchymal stem cells. Science.284(5411):143-147. DOI: 10.1016/S0065-1281(88)80056-4.
[85] M. Mumme, A. Barbero, S. Miot, A. Wixmerten. et al.(2016). Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. The Lancet.388(10055):1985-1994. DOI: 10.1016/S0065-1281(88)80056-4.
[86] C. Albrecht, B. Tichy, L. Zak, S. Aldrian. et al.(2014). Influence of cell differentiation and IL-1 expression on clinical outcomes after matrix-associated chondrocyte transplantation. The American Journal of Sports Medicine.42(1):59-69. DOI: 10.1016/S0065-1281(88)80056-4.
[87] S. Kobayashi, T. Takebe, Y. W. Zheng, M. Mizuno. et al.(2011). Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One.6(10, article e26393). DOI: 10.1016/S0065-1281(88)80056-4.
[88] K. J. L. Fernandes, I. A. McKenzie, P. Mill, K. M. Smith. et al.(2004). A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology.6(11):1082-1093. DOI: 10.1016/S0065-1281(88)80056-4.
[89] T. Togo, A. Utani, M. Naitoh, M. Ohta. et al.(2006). Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Laboratory Investigation.86(5):445-457. DOI: 10.1016/S0065-1281(88)80056-4.
[90] D. Widera, C. Zander, M. Heidbreder, Y. Kasperek. et al.(2009). Adult palatum as a novel source of neural crest-related stem cells. Stem Cells.27(8):1899-1910. DOI: 10.1016/S0065-1281(88)80056-4.
[91] B. de Campos Vidal, R. Vilarta. (1988). Articular cartilage: collagen II-proteoglycans interactions. Availability of reative groups. Variation in birefringence and differences as compared to collagen I. Acta Histochemica.83(2):189-205. DOI: 10.1016/S0065-1281(88)80056-4.
[92] H. J. Mankin. (1982). The response of articular cartilage to mechanical injury. The Journal of Bone & Joint Surgery.64(3):460-466. DOI: 10.1016/S0065-1281(88)80056-4.
[93] S. Gronthos, M. Mankani, J. Brahim, P. G. Robey. et al.(2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America.97(25):13625-13630. DOI: 10.1016/S0065-1281(88)80056-4.
[94] K.-Y. Saw, A. Anz, S. Merican, Y. G. Tay. et al.(2011). Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy: The Journal of Arthroscopic & Related Surgery.27(4):493-506. DOI: 10.1016/S0065-1281(88)80056-4.
[95] P. Angele, J. Fritz, D. Albrecht, J. Koh. et al.(2015). Defect type, localization and marker gene expression determines early adverse events of matrix-associated autologous chondrocyte implantation. Injury.46:S2-S9. DOI: 10.1016/S0065-1281(88)80056-4.
[96] K. T. Patton, G. A. Thibodeau. (2017). The Human Body in Health & Disease-E-Book. DOI: 10.1016/S0065-1281(88)80056-4.
[97] I. Sekiya, T. Muneta, M. Horie, H. Koga. et al.(2015). Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clinical Orthopaedics and Related Research..473(7):2316-2326. DOI: 10.1016/S0065-1281(88)80056-4.
[98] K.-Y. Saw, A. Anz, C. Siew-Yoke Jee, S. Merican. et al.(2013). Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy: The Journal of Arthroscopic & Related Surgery.29(4):684-694. DOI: 10.1016/S0065-1281(88)80056-4.
[99] P. Niemeyer, J. M. Pestka, G. M. Salzmann, N. P. Südkamp. et al.(2012). Influence of cell quality on clinical outcome after autologous chondrocyte implantation. The American Journal of Sports Medicine.40(3):556-561. DOI: 10.1016/S0065-1281(88)80056-4.
[100] C. Vinatier, O. Gauthier, A. Fatimi, C. Merceron. et al.(2009). An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnology and Bioengineering.102(4):1259-1267. DOI: 10.1016/S0065-1281(88)80056-4.
[101] S. M. Richardson, G. Kalamegam, P. N. Pushparaj, C. Matta. et al.(2016). Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods.99:69-80. DOI: 10.1016/S0065-1281(88)80056-4.
[102] P. D. Benya, J. D. Shaffer. (1982). Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell.30(1):215-224. DOI: 10.1016/S0065-1281(88)80056-4.
[103] M. Mumme, A. Steinitz, K. M. Nuss, K. Klein. et al.(2016). Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects. Tissue Engineering Part A.22(21-22):1286-1295. DOI: 10.1016/S0065-1281(88)80056-4.
[104] C. Milet, A. H. Monsoro-Burq. (2012). Neural crest induction at the neural plate border in vertebrates. Developmental Biology.366(1):22-33. DOI: 10.1016/S0065-1281(88)80056-4.
[105] R. Karuppal. (2017). Current Concepts in the Articular Cartilage Repair and Regeneration. DOI: 10.1016/S0065-1281(88)80056-4.
[106] K. Pelttari, B. Pippenger, M. Mumme, S. Feliciano. et al.(2014). Adult human neural crest-derived cells for articular cartilage repair. Science Translational Medicine.6(251, article 251ra119). DOI: 10.1016/S0065-1281(88)80056-4.
[107] R. Tarzemany, G. Jiang, J. X. Jiang, C. Gallant-Behm. et al.(2018). Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts. Experimental Cell Research.367(2):150-161. DOI: 10.1016/S0065-1281(88)80056-4.
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次