首页 » 文章 » 文章详细信息
Stem Cells International Volume 2019 ,2019-01-15
Osteoarthritic Synovial Fluid Modulates Cell Phenotype and Metabolic Behavior In Vitro
Research Article
Eduardo Branco de Sousa 1 , 2 Gilson Costa dos Santos Junior 3 Ramon Pinheiro Aguiar 3 Rafaela da Costa Sartore 1 Ana Carolina Leal de Oliveira 1 Fabio Ceneviva Lacerda Almeida 3 Vivaldo Moura Neto 2 , 4 Diego Pinheiro Aguiar 1 , 5
Show affiliations
DOI:10.1155/2019/8169172
Received 2018-07-23, accepted for publication 2018-10-21, Published 2018-10-21
PDF
摘要

Synovial fluid holds a population of mesenchymal stem cells (MSC) that could be used for clinical treatment. Our goal was to characterize the inflammatory and metabolomic profile of the synovial fluid from osteoarthritic patients and to identify its modulatory effect on synovial fluid cells. Synovial fluid was collected from non-OA and OA patients, which was centrifuged to isolate cells. Cells were cultured for 21 days, characterized with specific markers for MSC, and exposed to a specific cocktail to induce chondrogenic, osteogenic, and adipogenic differentiation. Then, we performed a MTT assay exposing SF cells from non-OA and OA patients to a medium containing non-OA and OA synovial fluid. Synovial fluid from non-OA and OA patients was submitted to ELISA to evaluate BMP-2, BMP-4, IL-6, IL-10, TNF-α, and TGF-β1 concentrations and to a metabolomic evaluation using 1H-NMR. Synovial fluid cells presented spindle-shaped morphology in vitro. Samples from OA patients formed a higher number of colonies than the ones from non-OA patients. After 21 days, the colony-forming cells from OA patients differentiated into the three mesenchymal cell lineages, under the appropriated induction protocols. Synovial fluid cells increased its metabolic activity after being exposed to the OA synovial fluid. ELISA assay showed that OA synovial fluid samples presented higher concentration of IL-10 and TGF-β1 than the non-OA, while the NMR showed that OA synovial fluid presents higher concentrations of glucose and glycerol. In conclusion, SFC activity is modulated by OA synovial fluid, which presents higher concentration of IL-10, TGF-β, glycerol, and glucose.

授权许可

Copyright © 2019 Eduardo Branco de Sousa et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Eduardo Branco de Sousa.Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil;Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil, ufrj.br.eduardobsousa@globo.com

推荐引用方式

Eduardo Branco de Sousa,Gilson Costa dos Santos Junior,Ramon Pinheiro Aguiar,Rafaela da Costa Sartore,Ana Carolina Leal de Oliveira,Fabio Ceneviva Lacerda Almeida,Vivaldo Moura Neto,Diego Pinheiro Aguiar. Osteoarthritic Synovial Fluid Modulates Cell Phenotype and Metabolic Behavior In Vitro. Stem Cells International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] A. Smolinska, L. Blanchet, L. M. C. Buydens, S. S. Wijmenga. et al.(2012). NMR and pattern recongnition methods in metabolomics: from data acquisition to biomarker discovery: a review. Analytica Chimica Acta.750:82-97. DOI: 10.1002/jcp.21258.
[2] F. J. Blanco, C. Ruiz-Romero. (2012). Metabolomic characterization of metabolic phenotypes in OA. Nature Reviews Rheumatology.8(3):130-132. DOI: 10.1002/jcp.21258.
[3] F. V. Jelena, D. M. Jasmina, R. Anita, A. Nenad. et al.(2015). Proliferaton and differentiation potential of canine synovial fluid cells. Acta Vetererinaria-Beograd.65(1):66-78. DOI: 10.1002/jcp.21258.
[4] C. De Bari, F. Dell’Accio, P. Tylzanowski, F. P. Luyten. et al.(2011). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism.44(8):1928-1942. DOI: 10.1002/jcp.21258.
[5] I. Sekiya, M. Ojima, S. Suzuki, M. Yamaga. et al.(2012). Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. Journal of Orthopaedic Research.30(6):943-949. DOI: 10.1002/jcp.21258.
[6] M. B. Goldring, S. R. Goldring. (2007). Osteoarthritis. Journal of Cellular Physiology.213(3):626-634. DOI: 10.1002/jcp.21258.
[7] A. S. Adams, L. A. Setton, E. Kensicki, M. P. Bolognesi. et al.(2012). Global metabolic profiling of human osteoarthritic synovium. Osteoarthritis and Cartilage.20(1):64-67. DOI: 10.1002/jcp.21258.
[8] A. Hatekayama, S. Uchida, H. Utsunomiya, M. Tsukamoto. et al.(2017). Isolation and characterization of synovial mesenchymal stem cell derived from hip joints: a comparative analysis with a matched control knee group. Stem Cells International.2017-13. DOI: 10.1002/jcp.21258.
[9] C. M. Lee, J. D. Kisiday, C. W. Mcllwraith, A. J. Grodzinsky. et al.(2013). Synoviocytes protect cartilage from the effects of injury in vitro. BMC Musculoskeletal Disorders.14(1):54. DOI: 10.1002/jcp.21258.
[10] E. B. De Sousa, P. L. Casado, V. Moura-Neto, M. E. L. Duarte. et al.(2014). Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy.5(5):112. DOI: 10.1002/jcp.21258.
[11] J. P. Krüger, M. Endres, K. Neumann, B. Stuhlmüller. et al.(2012). Chondrogenic differentiation of human subchondral progenitor cells is affected by synovial fluid from donors with osteoarthritis or rheumatoid arthritis. Journal of Orthopaedic Surgery and Research.7(1):10. DOI: 10.1002/jcp.21258.
[12] E. J. Kubosh, E. Heidt, A. Bernstein, K. Böttiger. et al.(2016). The trans-well coculture of human synovial mesenchymal stem cells with chondrocytes leads to self-organization, chondrogenic differentiation, and secretion of TGF. Stem Cell Research & Therapy.7(1):64. DOI: 10.1002/jcp.21258.
[13] I. Sekiya, T. Muneta, M. Horie, H. Koga. et al.(2015). Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clinical Orthopaedics and Related Research.473(7):2316-2326. DOI: 10.1002/jcp.21258.
[14] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach. et al.(2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotheraphy.8(4):315-317. DOI: 10.1002/jcp.21258.
[15] M. R. Safran, H. Kim, S. Zaffagnini. (2008). The use of scaffolds in the management of articular injury. JAAOS.16(6):306-311. DOI: 10.1002/jcp.21258.
[16] Y. S. Kim, H. J. Lee, J. E. Yeo, Y. I. Kim. et al.(2015). Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. The American Journal of Sports Medicine.43(2):399-406. DOI: 10.1002/jcp.21258.
[17] P. Bianco, M. Riminucci, S. Gronthos, P. G. Robey. et al.(2001). Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells.19(3):180-192. DOI: 10.1002/jcp.21258.
[18] X. Houard, M. B. Goldring. (2013). Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Current Rheumatology Reports.15(11):375. DOI: 10.1002/jcp.21258.
[19] R. F. Loeser, S. R. Goldring, C. R. Scanzello, M. B. Goldring. et al.(2012). Osteoarthritis: a disease of the joint as an organ. Arthritis and Rheumatism.64(6):1697-1707. DOI: 10.1002/jcp.21258.
[20] R. Priori, R. Scrivo, J. Brandt, M. Valerio. et al.(2013). Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmunity Reviews.12(10):1022-1030. DOI: 10.1002/jcp.21258.
[21] S. Kim, J. Hwang, J. Kim, J. K. Ahn. et al.(2017). Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis. Joint, Bone, Spine.84(5):605-610. DOI: 10.1002/jcp.21258.
[22] A. Z. Damyanovich, J. R. Staples, K. W. Marshall. (1999). H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthritis and Cartilage.7(2):165-172. DOI: 10.1002/jcp.21258.
[23] L. Lacitignola, A. Crovace, F. P. Fanizzi, L. Lacitignola. et al.(2008). 1H NMR investigation of normal and osteoarthritic synovial fluid in the horse. Veterinary and Comparative Orthopaedics and Traumatology.21(1):85-88. DOI: 10.1002/jcp.21258.
[24] Y.-P. Sun, Y.-H. Zheng, Y.-L. Zheng, Z.-G. Zhang. et al.(2014). Synovium fragment-derived cells exhibit characteristics similar to those of dissociated multipotent cells in synovial fluid of the temporomandibular joint. PLoS One.9(7, article e101896). DOI: 10.1002/jcp.21258.
[25] N. Koyama, Y. Okubo, K. Nakao, K. Osawa. et al.(2011). Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sciences.89(19-20):741-747. DOI: 10.1002/jcp.21258.
[26] E. B. De Sousa, G. C. Santos, M. E. L. Duarte, V. Moura Neto. et al.(2017). Metabolomics as a promising tool for early osteoarthritis diagnosis. Brazilian Journal of Medical and Biological Research.50(11, article e6485). DOI: 10.1002/jcp.21258.
[27] P. K. Gupta, A. K. Das, A. Chullikana, A. S. Majumdar. et al.(2012). Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Research & Therapy.3(4):25. DOI: 10.1002/jcp.21258.
[28] Y. Liu, R. Hou, R. Yin, W. Yin. et al.(2015). Correlation of bone morphogenetic protein-2 levels in serum and synovial fluid with disease severity of knee osteoarthritis. Medical Science Monitor.21:363-370. DOI: 10.1002/jcp.21258.
[29] S. Zhang, T. Muneta, T. Morito, T. Mochizuki. et al.(2008). Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. Journal of Orthopaedic Research.26(10):1413-1418. DOI: 10.1002/jcp.21258.
[30] K. W. Finnson, Y. Chi, G. Bou-Gharious, A. Leask. et al.(2012). TGF-b signaling in cartilage homeostasis and osteoarthritis. Frontiers in Bioscience.S4(1):251-268. DOI: 10.1002/jcp.21258.
[31] F. Barry, M. Murphy. (2013). Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology.9(10):584-594. DOI: 10.1002/jcp.21258.
[32] L. Nelson, H. E. McCarthy, J. Fairclough, R. Williams. et al.(2014). Evidence of a viable pool of stem cells within human osteoarthritic cartilage. Cartilage.5(4):203-214. DOI: 10.1002/jcp.21258.
[33] M. K. Kosinska, G. Leibisch, G. Lochnit, J. Wilhelm. et al.(2014). Sphingolipids in human synovial fluid - a lipidomic study. PLoS One.9, article e91769(3):9. DOI: 10.1002/jcp.21258.
[34] E. A. Jones, A. English, K. Henshaw, S. E. Kinsey. et al.(2004). Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis & Rheumatism.50(3):817-827. DOI: 10.1002/jcp.21258.
[35] B. Mickiewicks, J. L. Kelly, T. E. Ludwig, A. M. Weljie. et al.(2015). Metabolic analysis of knee synovial fluid as a potential diagnostic approach for osteoarthritis. Journal of Orthopaedic Research.33(11):1631-1638. DOI: 10.1002/jcp.21258.
[36] J. H. Kellgren, J. S. Lawrence. (1957). Radiological assessment of osteo-arthrosis. Annals of the Rheumatic Diseases.16(4):494-502. DOI: 10.1002/jcp.21258.
[37] S. Larsson, M. Englund, A. Struglics, L. S. Lohmander. et al.(2015). Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarthritis and Cartilage.23(11):1906-1914. DOI: 10.1002/jcp.21258.
[38] W. Zhang, G. Sun, S. Likhodii, E. Aref-Eshghi. et al.(2016). Metabolomic analysis of human synovial fluid and plasma reveals that phosphatidylcholine metabolism is associated with both osteoarthritis and diabetes mellitus. Metabolomics.12(2):24. DOI: 10.1002/jcp.21258.
[39] E. Altobelli, P. M. Angeletti, D. Piccolo, R. de Angelis. et al.(2017). Synovial fluid and serum concentrations of inflammatory markers in rheumatoid arthritis, psoriatic arthritis and osteoarthitis: a systematic review. Current Rheumatology Reviews.13(3):170-179. DOI: 10.1002/jcp.21258.
[40] T. Mabey, S. Honsawek, A. Tanavalee, P. Yuktanandana. et al.(2016). Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers.21(7):639-644. DOI: 10.1002/jcp.21258.
[41] R. J. Krawetz, Y. E. Wu, L. Martin, J. B. Rattner. et al.(2012). Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One.7(8, article e43616). DOI: 10.1002/jcp.21258.
[42] N. Shyh-Chang, H.-H. Ng. (2017). The metabolic programming of stem cells. Genes & Development.31(4):336-346. DOI: 10.1002/jcp.21258.
[43] M. G. V. Heiden, L. C. Cantley, C. B. Thompson. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science.324(5930):1029-1033. DOI: 10.1002/jcp.21258.
[44] K. Johnson, S. Zhu, M. S. Tremblay, J. N. Payette. et al.(2012). A stem cell-based approach to cartilage repair. Science.336(6082):717-721. DOI: 10.1002/jcp.21258.
[45] K. Koisumi, K. Ebina, D. A. Hart, M. Hirao. et al.(2016). Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering approach. Osteoarthritis and Cartilage.24(8):1413-1422. DOI: 10.1002/jcp.21258.
[46] J. Fülber, D. A. Maria, L. C. L. C. da Silva, C. O. Massoco. et al.(2016). Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment. Stem Cell Research & Therapy.7(1):35. DOI: 10.1002/jcp.21258.
[47] S. A. Kusnetzov, P. H. Krebsbach, K. Satomura, J. Kerr. et al.(1997). Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. Journal of Bone and Mineral Research.12(9):1335-1347. DOI: 10.1002/jcp.21258.
[48] S. Alsalamch, R. Amin, T. Gemba, M. Lotz. et al.(2014). Identification of mesenchymal progenitor cell in normal and osteoarthritic human articular cartilage. Arthritis & Rheumatism.50(5):1522-1532. DOI: 10.1002/jcp.21258.
[49] G. Livshits, G. Zhai, D. J. Hart, B. S. Kato. et al.(2009). Interleukin-6 is a significant predictor of radiographic knee osteoarthritis. Arthritis & Rheumatism.60(7):2037-2045. DOI: 10.1002/jcp.21258.
[50] T. Morito, T. Muneta, K. Hara, Y. J. Ju. et al.(2008). Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology.47(8):1137-1143. DOI: 10.1002/jcp.21258.
[51] Y. Matsukura, T. Muneta, K. Tsuji, H. Koga. et al.(2014). Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clinical Orthopaedics and Related Research.472(5):1357-1364. DOI: 10.1002/jcp.21258.
[52] P. M. van der Kraan, M. J. Goumans, E. B. Davidson, P. ten Dijke. et al.(2012). Age-dependent alteration of TGF- signalling in osteoarthritis. Cell and Tissue Research.347(1):257-265. DOI: 10.1002/jcp.21258.
[53] W. Ando, J. Kutcher, R. Krawetz, A. Sen. et al.(2014). Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage. Cytotherapy.16(6):776-788. DOI: 10.1002/jcp.21258.
[54] P. M. van der Kraan, E. N. B. Davidson, A. Blom, W. B. van den Berg. et al.(2009). TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis. Osteoarthritis and Cartilage.17(12):1539-1545. DOI: 10.1002/jcp.21258.
[55] Y. I. Kim, J.-S. Ryu, J. E. Yeo, Y. J. Choi. et al.(2014). Overexpression of TGF-1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochemical and Biophysical Research Communications.450(4):1593-1599. DOI: 10.1002/jcp.21258.
[56] X. Su, W. Zuo, Z. Wu, J. Chen. et al.(2015). CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis. Journal of Orthopaedic Research.33(1):84-91. DOI: 10.1002/jcp.21258.
[57] M. Shioda, T. Muneta, K. Tsuji, M. Mizuno. et al.(2017). TNF promotes proliferation of human synovial MSCs while maintaining chondrogenic potential. PLoS One.12(5, article e0177771). DOI: 10.1002/jcp.21258.
[58] A. Plaas, J. Velasco, D. J. Gorski, J. Li. et al.(2011). The relationship between fibrogenic TGF1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis and Cartilage.19(9):1081-1090. DOI: 10.1002/jcp.21258.
[59] E. A. Jones, A. Crawford, A. E. English, K. Henshaw. et al.(2008). Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis & Rheumatism.58(6):1731-1740. DOI: 10.1002/jcp.21258.
[60] D.-H. Lee, C. H. Sonn, S.-B. Han, Y. Oh. et al.(2012). Synovial fluid CD34, CD44, CD90 mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis and Cartilage.20(2):106-109. DOI: 10.1002/jcp.21258.
[61] A. van Camm, W. Madej, E. Thijssen, A. Garcia de Vinuesa. et al.(2016). Expression of TGF-family signalling components in ageing cartilage: age-related loss of TGF and BMP receptors. Osteoarthritis and Cartilage.24(7):1235-1245. DOI: 10.1002/jcp.21258.
[62] A. A. F. Prado, P. O. Favaron, L. C. L. C. da Silva, R. Y. A. Baccarin. et al.(2015). Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane. BMC Veterinary Research.11(1):281. DOI: 10.1002/jcp.21258.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次