首页 » 文章 » 文章详细信息
Stem Cells International Volume 2019 ,2019-01-15
Serum-Free Manufacturing of Mesenchymal Stem Cell Tissue Rings Using Human-Induced Pluripotent Stem Cells
Research Article
Tackla S. Winston 1 , 2 Kantaphon Suddhapas 1 , 2 Chenyan Wang 1 , 2 Rafael Ramos 1 , 2 Pranav Soman 1 , 2 Zhen Ma 1 , 2
Show affiliations
DOI:10.1155/2019/5654324
Received 2018-06-25, accepted for publication 2018-11-19, Published 2018-11-19
PDF
摘要

Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.

授权许可

Copyright © 2019 Tackla S. Winston et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zhen Ma.Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse NY 13244, USA, syr.edu;Syracuse Biomaterials Institute, Syracuse University, Syracuse NY 13244, USA, syr.edu.zma112@syr.edu

推荐引用方式

Tackla S. Winston,Kantaphon Suddhapas,Chenyan Wang,Rafael Ramos,Pranav Soman,Zhen Ma. Serum-Free Manufacturing of Mesenchymal Stem Cell Tissue Rings Using Human-Induced Pluripotent Stem Cells. Stem Cells International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] A. D. Dikina, H. A. Strobel, B. P. Lai, M. W. Rolle. et al.(2015). Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials.52:452-462. DOI: 10.22203/ecm.v006a04.
[2] F. E. Tögel, C. Westenfelder. (2010). Mesenchymal stem cells: a new therapeutic tool for AKI. Nature Reviews. Nephrology.6(3):179-183. DOI: 10.22203/ecm.v006a04.
[3] J.-Y. Hsieh, Y.-S. Fu, S.-J. Chang, Y.-H. Tsuang. et al.(2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells and Development.19(12):1895-1910. DOI: 10.22203/ecm.v006a04.
[4] A. Mahmood, L. Harkness, H. D. Schrøder, B. M. Abdallah. et al.(2010). Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-/activin/nodal signaling using SB-431542. Journal of Bone and Mineral Research.25(6):1216-1233. DOI: 10.22203/ecm.v006a04.
[5] T. A. Gwyther, J. Z. Hu, K. L. Billiar, M. W. Rolle. et al.(2011). Directed cellular self-assembly to fabricate cell-derived tissue rings for biomechanical analysis and tissue engineering. Journal of Visualized Experiments(57). DOI: 10.22203/ecm.v006a04.
[6] L. Sánchez, I. Gutierrez-Aranda, G. Ligero, R. Rubio. et al.(2011). Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells.29(2):251-262. DOI: 10.22203/ecm.v006a04.
[7] M. J. Kim, K. S. Shin, J. H. Jeon, D. R. Lee. et al.(2011). Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell and Tissue Research.346(1):53-64. DOI: 10.22203/ecm.v006a04.
[8] G. K. Naughton. (2002). From lab bench to market. Annals of the New York Academy of Sciences.961(1):372-385. DOI: 10.22203/ecm.v006a04.
[9] S. Eto, M. Goto, M. Soga, Y. Kaneko. et al.(2018). Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. PLoS One.13(7):e0200790-e0200722. DOI: 10.22203/ecm.v006a04.
[10] A. I. Caplan, D. Correa. (2011). The MSC: an injury drugstore. Cell Stem Cell.9(1):11-15. DOI: 10.22203/ecm.v006a04.
[11] J. D. Sipe. (2002). Tissue engineering and reparative medicine. Annals of the New York Academy of Sciences.961(1):1-9. DOI: 10.22203/ecm.v006a04.
[12] S. Barlow, G. Brooke, K. Chatterjee, G. Price. et al.(2008). Comparison of human placenta-and bone marrow–derived multipotent mesenchymal stem cells. Stem Cells and Development.17(6):1095-1108. DOI: 10.22203/ecm.v006a04.
[13] C. K. Rebelatto, A. M. Aguiar, M. P. Moretão, A. C. Senegaglia. et al.(2008). Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Experimental Biology and Medicine.233(7):901-913. DOI: 10.22203/ecm.v006a04.
[14] R. S. Langer, J. P. Vacanti. (1999). Tissue engineering: the challenges ahead. Scientific American.280(4):86-89. DOI: 10.22203/ecm.v006a04.
[15] S. Kern, H. Eichler, J. Stoeve, H. Klüter. et al.(2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells.24(5):1294-1301. DOI: 10.22203/ecm.v006a04.
[16] Y. S. Chen, R. A. Pelekanos, R. L. Ellis, R. Horne. et al.(2012). Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. Stem Cells Translational Medicine.1(2):83-95. DOI: 10.22203/ecm.v006a04.
[17] H. A. Strobel, E. L. Calamari, B. Alphonse, T. A. Hookway. et al.(2018). Fabrication of custom agarose wells for cell seeding and tissue ring self-assembly using 3D-printed molds. Journal of Visualized Experiments(134). DOI: 10.22203/ecm.v006a04.
[18] L. Menendez, M. J. Kulik, A. T. Page, S. S. Park. et al.(2013). Directed differentiation of human pluripotent cells to neural crest stem cells. Nature Protocols.8(1):203-212. DOI: 10.22203/ecm.v006a04.
[19] X. Liu, T. Kohyama, H. Wang, Y. K. Zhu. et al.(2002). Th2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells. American Journal of Physiology-Lung Cellular and Molecular Physiology.282(5):L1049-L1056. DOI: 10.22203/ecm.v006a04.
[20] F. Vizoso, N. Eiro, S. Cid, J. Schneider. et al.(2017). Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences.18(9). DOI: 10.22203/ecm.v006a04.
[21] Z. Feng, M. Yamato, T. Akutsu, T. Nakamura. et al.(2003). Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. Artificial Organs.27(1):84-91. DOI: 10.22203/ecm.v006a04.
[22] A. Achilleos, P. A. Trainor. (2012). Neural crest stem cells: discovery, properties and potential for therapy. Cell Research.22(2):288-304. DOI: 10.22203/ecm.v006a04.
[23] R. Kang, Y. Zhou, S. Tan, G. Zhou. et al.(2015). Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Research & Therapy.6(1):1-14. DOI: 10.22203/ecm.v006a04.
[24] A. Infante, C. I. Rodríguez. (2018). Secretome analysis of in vitro aged human mesenchymal stem cells reveals IGFBP7 as a putative factor for promoting osteogenesis. Scientific Reports.8(1):4632-4612. DOI: 10.22203/ecm.v006a04.
[25] T. Shazly, A. Rachev, S. Lessner, W. S. Argraves. et al.(2015). On the uniaxial ring test of tissue engineered constructs. Experimental Mechanics.55(1):41-51. DOI: 10.22203/ecm.v006a04.
[26] N. S. Hwang, S. Varghese, H. J. Lee, Z. Zhang. et al.(2008). In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proceedings of the National Academy of Sciences of the United States of America.105(52):20641-20646. DOI: 10.22203/ecm.v006a04.
[27] S. E. Brown, W. Tong, P. H. Krebsbach. (2008). The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs.189(1-4):256-260. DOI: 10.22203/ecm.v006a04.
[28] S. Zhou, J. S. Greenberger, M. W. Epperly, J. P. Goff. et al.(2008). Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell.7(3):335-343. DOI: 10.22203/ecm.v006a04.
[29] A. Stolzing, E. Jones, D. McGonagle, A. Scutt. et al.(2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development.129(3):163-173. DOI: 10.22203/ecm.v006a04.
[30] T. C. Flanagan, A. Pandit. (2003). Living artificial heart valve alternatives: a review. European Cells and Materials.6:28-45. DOI: 10.22203/ecm.v006a04.
[31] P. Ngo, P. Ramalingam, J. A. Phillips, G. T. Furuta. et al.(2006). Collagen gel contraction assay. Cell-Cell Interactions in Health and Disease.341. DOI: 10.22203/ecm.v006a04.
[32] T. Barberi, L. M. Willis, N. D. Socci, L. Studer. et al.(2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine.2(6):e161-0560. DOI: 10.22203/ecm.v006a04.
[33] B. C. Dash, K. Levi, J. Schwan, J. Luo. et al.(2016). Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Reports.7(1):19-28. DOI: 10.22203/ecm.v006a04.
[34] Q. L. Fu, Y. Y. Chow, S. J. Sun, Q. X. Zeng. et al.(2012). Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy.67(10):1215-1222. DOI: 10.22203/ecm.v006a04.
[35] H. Naito, T. Tojo, M. Kimura, Y. Dohi. et al.(2011). Engineering bioartificial tracheal tissue using hybrid fibroblast-mesenchymal stem cell cultures in collagen hydrogels. Interactive Cardiovascular and Thoracic Surgery.12(2):156-161. DOI: 10.22203/ecm.v006a04.
[36] A. Monsel, Y. G. Zhu, S. Gennai, Q. Hao. et al.(2014). Cell-based therapy for acute organ injury. Anesthesiology.121(5):1099-1121. DOI: 10.22203/ecm.v006a04.
文献评价指标
浏览 37次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次