首页 » 文章 » 文章详细信息
Parkinson's Disease Volume 2019 ,2019-01-17
Five-Year Clinical Outcomes of Local versus General Anesthesia Deep Brain Stimulation for Parkinson’s Disease
Research Article
Sheng-Tzung Tsai 1 , 2 Tsung-Ying Chen 3 Sheng-Huang Lin 4 Shin-Yuan Chen 1 , 2
Show affiliations
DOI:10.1155/2019/5676345
Received 2018-08-28, accepted for publication 2018-12-06, Published 2018-12-06
PDF
摘要

Background. Studies comparing long-term outcomes between general anesthesia (GA) and local anesthesia (LA) for STN-DBS in Parkinson’s disease (PD) are lacking. Whether patients who received STN-DBS in GA could get the same benefit without compromising electrophysiological recording is debated. Methods. We compared five-year outcomes for different anesthetic methods (GA vs LA) during STN-DBS for PD. Thirty-six consecutive PD patients with similar preoperative characteristics, including age, disease duration, and severity, underwent the same surgical procedures except the GA (n=22) group with inhalational anesthesia and LA (n=14) with local anesthesia during microelectrode recording and intraoperative macrostimulation test. Surgical outcome evaluations included Unified Parkinson’s Disease Rating Scale (UPDRS), Mini-Mental Status Examinations, and the Beck Depression Inventory. Stimulation parameters and coordinates of STN targeting were also collected. Results. Both groups attained similar benefits in UPDRS part III from STN-DBS (GA 43.2 ± 14.1% vs. LA 46.8 ± 13.8% decrease, p=0.45; DBS on/Med off vs. DBS off/Med off) and no difference in reduction of levodopa equivalent doses (GA 47.56 ± 18.98% vs. LA 51.37 ± 31.73%, p=0.51) at the five-year follow-up. In terms of amplitude, frequency, and pulse width, the stimulation parameters used for DBS were comparable, and the coordinates of preoperative targeting and postoperative electrode tip were similar between two groups. There was no difference in STN recording length as well. Significantly less number of MER tracts in GA was found (p=0.04). Adverse effects were similar in both groups. Conclusions. Our study confirmed that STN localization with microelectrode recording and patient comfort could be achieved based on equal effectiveness and safety of STN-DBS under GA compared with LA.

授权许可

Copyright © 2019 Sheng-Tzung Tsai et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Shin-Yuan Chen.Department of Neurosurgery, Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, tcu.edu.tw;Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, tcu.edu.tw.william.sychen@msa.hinet.net

推荐引用方式

Sheng-Tzung Tsai,Tsung-Ying Chen,Sheng-Huang Lin,Shin-Yuan Chen. Five-Year Clinical Outcomes of Local versus General Anesthesia Deep Brain Stimulation for Parkinson’s Disease. Parkinson's Disease ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] F. Yoshida, I. Martinez-Torres, A. Pogosyan. (2010). Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry.81(8):885-889. DOI: 10.1136/jnnp-2014-307745.
[2] S. C. LaHue, J. L. Ostrem, N. B. Galifianakis. (2017). Parkinson’s disease patient preference and experience with various methods of DBS lead placement. Parkinsonism and Related Disorders.41:25-30. DOI: 10.1136/jnnp-2014-307745.
[3] M. Sorar, S. Hanalioglu, B. Kocer, M. T. Eser. et al.(2018). Experience reduces surgical and hardware-related complications of deep brain stimulation surgery: a single-center study of 181 patients operated in six years. Parkinson’s Disease.2018-7. DOI: 10.1136/jnnp-2014-307745.
[4] A. Castrioto, A. M. Lozano, Y. Y. Poon, A. E. Lang. et al.(2011). Ten-year outcome of subthalamic stimulation in Parkinson disease. Archives of Neurology.68(12):1550-1556. DOI: 10.1136/jnnp-2014-307745.
[5] R. Mehanna, J. A. Bajwa, H. Fernandez, A. A. Wagle Shukla. et al.(2017). Cognitive impact of deep brain stimulation on Parkinson’s disease patients. Parkinson’s Disease.2017-15. DOI: 10.1136/jnnp-2014-307745.
[6] A. L. Ho, R. Ali, I. D. Connolly. (2017). Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry.89(7):687-691. DOI: 10.1136/jnnp-2014-307745.
[7] A. Raz, D. Eimerl, A. Zaidel, H. Bergman. et al.(2010). Propofol decreases neuronal population spiking activity in the subthalamic nucleus of parkinsonian patients. Anesthesia and Analgesia.111(5):1285-1289. DOI: 10.1136/jnnp-2014-307745.
[8] F. Hertel, M. Züchner, I. Weimar. (2006). Implantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson’s disease with the aid of intraoperative microrecording under general anesthesia. Neurosurgery.59(5):E1138. DOI: 10.1136/jnnp-2014-307745.
[9] M. A. Brodsky, S. Anderson, C. Murchison. (2017). Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology.89(19):1944-1950. DOI: 10.1136/jnnp-2014-307745.
[10] K. J. Burchiel, S. McCartney, A. Lee, A. M. Raslan. et al.(2013). Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. Journal of Neurosurgery.119:301-306. DOI: 10.1136/jnnp-2014-307745.
[11] M. E. Ivan, J. Yarlagadda, A. P. Saxena. (2014). Brain shift during bur hole-based procedures using interventional MRI. Journal of Neurosurgery.121:149-160. DOI: 10.1136/jnnp-2014-307745.
[12] S.-T. Tsai, S.-H. Lin, S.-Z. Lin, J.-Y. Chen. et al.(2007). Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery.61(5):1024-1030. DOI: 10.1136/jnnp-2014-307745.
[13] R. E. Gross, P. Krack, M. C. Rodriguez-Oroz, A. R. Rezai. et al.(2006). Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Movement Disorders.21(14):259-283. DOI: 10.1136/jnnp-2014-307745.
[14] S.-T. Tsai, W.-Y. Chuang, C.-C. Kuo. (2015). Dorsolateral subthalamic neuronal activity enhanced by median nerve stimulation characterizes Parkinson’s disease during deep brain stimulation with general anesthesia. Journal of Neurosurgery.123(6):1394-1400. DOI: 10.1136/jnnp-2014-307745.
[15] J. L. Ostrem, N. Ziman, N. B. Galifianakis. (2016). Clinical outcomes using clear point interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. Journal of Neurosurgery.124(4):908-916. DOI: 10.1136/jnnp-2014-307745.
[16] S.-H. Lin, T.-Y. Chen, S.-Z. Lin. (2008). Subthalamic deep brain stimulation after anesthetic inhalation in Parkinson disease: a preliminary study. Journal of Neurosurgery.109:238-244. DOI: 10.1136/jnnp-2014-307745.
[17] S. Falowski, Y. C. Ooi, A. Smith, L. Verhargen Metman. et al.(2012). An evaluation of hardware and surgical complications with deep brain stimulation based on diagnosis and lead location. Stereotactic and Functional Neurosurgery.90(3):173-180. DOI: 10.1136/jnnp-2014-307745.
[18] K. Witt, O. Granert, C. Daniels. (2013). Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain.136(7):2109-2119. DOI: 10.1136/jnnp-2014-307745.
[19] K. Witt, C. Daniels, J. Reiff. (2008). Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. The Lancet Neurology.7(7):605-614. DOI: 10.1136/jnnp-2014-307745.
[20] T. Chen, Z. Mirzadeh, K. Chapple, M. Lambert. et al.(2017). Complication rates, lengths of stay, and readmission rates in “awake” and “asleep” deep brain simulation. Journal of Neurosurgery.127(2):360-369. DOI: 10.1136/jnnp-2014-307745.
[21] W.-W. Lee, G. Ehm, H.-J. Yang. (2016). Bilateral deep brain stimulation of the subthalamic nucleus under sedation with propofol and fentanyl. PLoS One.11(3):e0152619. DOI: 10.1136/jnnp-2014-307745.
[22] S.-Y. Chen, S.-T. Tsai, S.-H. Lin. (2011). Subthalamic deep brain stimulation in Parkinson’s disease under different anesthetic modalities: a comparative cohort study. Stereotactic and Functional Neurosurgery.89(6):372-380. DOI: 10.1136/jnnp-2014-307745.
[23] S.-Y. Chen, C.-C. Lee, S.-H. Lin. (2006). Microelectrode recording can be a good adjunct in magnetic resonance image-directed subthalamic nucleus deep brain stimulation for parkinsonism. Surgical Neurology.65(3):253-260. DOI: 10.1136/jnnp-2014-307745.
[24] F. Fluchere, T. Witjas, A. Eusebio. (2013). Controlled general anaesthesia for subthalamic nucleus stimulation in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry.85(10):1167-1173. DOI: 10.1136/jnnp-2014-307745.
[25] P. C. Warnke. (2014). Deep brain stimulation surgery under general anaesthesia with microelectrode recording: the best of both worlds or a little bit of everything?. Journal of Neurology, Neurosurgery & Psychiatry.85(10):1063. DOI: 10.1136/jnnp-2014-307745.
[26] A. J. Fenoy, R. K. Simpson. (2014). Risks of common complications in deep brain stimulation surgery: management and avoidance. Journal of Neurosurgery.120(1):132-139. DOI: 10.1136/jnnp-2014-307745.
[27] J. A. Thompson, D. Lanctin, N. F. Ince, A. Abosch. et al.(2014). Clinical implications of local field potentials for understanding and treating movement disorders. Stereotactic and Functional Neurosurgery.92(4):251-263. DOI: 10.1136/jnnp-2014-307745.
[28] A. M. Harries, J. Kausar, S. A. G. Roberts. (2012). Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. Journal of Neurosurgery.116(1):107-113. DOI: 10.1136/jnnp-2014-307745.
[29] S.-Y. Chen, S.-T. Tsai, H.-Y. Hung, S.-H. Lin. et al.(2011). Targeting the subthalamic nucleus for deep brain stimulation-A comparative study between magnetic resonance images alone and fusion with computed tomographic images. World Neurosurgery.75(1):132-137. DOI: 10.1136/jnnp-2014-307745.
[30] A. Fasano, L. M. Romito, A. Daniele. (2010). Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain.133(9):2664-2676. DOI: 10.1136/jnnp-2014-307745.
[31] A. Abosch, L. Timmermann, S. Bartley. (2012). An international survey of deep brain stimulation procedural steps. Stereotactic and Functional Neurosurgery.91(1):1-11. DOI: 10.1136/jnnp-2014-307745.
[32] X. Hu, X. Jiang, X. Zhou. (2010). Avoidance and management of surgical and hardware-related complications of deep brain stimulation. Stereotactic and Functional Neurosurgery.88(5):296-303. DOI: 10.1136/jnnp-2014-307745.
[33] S.-L. Chien, S.-Z. Lin, C.-C. Liang. (2006). The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonism and Related Disorders.12(7):438-442. DOI: 10.1136/jnnp-2014-307745.
[34] M. Zibetti, A. Merola, L. Rizzi. (2011). Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Movement Disorders.26(13):2327-2334. DOI: 10.1136/jnnp-2014-307745.
[35] M. Anheim, A. Batir, V. Fraix. (2008). Improvement in Parkinson disease by subthalamic nucleus stimulation based on electrode placement: effects of reimplantation. Archives of Neurology.65(5):612-616. DOI: 10.1136/jnnp-2014-307745.
文献评价指标
浏览 46次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次