首页 » 文章 » 文章详细信息
Modelling and Simulation in Engineering Volume 2019 ,2019-01-15
Flood Simulation by a Well-Balanced Finite Volume Method in Tapi River Basin, Thailand, 2017
Research Article
Sutatip Vichiantong 1 Thida Pongsanguansin 2 Montri Maleewong 1
Show affiliations
DOI:10.1155/2019/7053131
Received 2018-08-30, accepted for publication 2018-12-06, Published 2018-12-06
PDF
摘要

Flood simulation of a region in southern Thailand during January 2017 is presented in this work. The study area covers the Tapi river, the longest river in southern Thailand. The simulation is performed by applying the two-dimensional shallow water model in the presence of strong source terms to the local bottom topography. The model is solved numerically by our finite volume method with well-balanced property and linear reconstruction technique. This technique is accurate and efficient at solving for complex flows in the wet/dry interface problem. Measurements of flows are collected from two gauging stations in the area. The initial conditions are prepared to match the simulated flow to the measurements recorded at the gauging stations. The accuracy of the numerical simulations is demonstrated by comparing the simulated flood area to satellite images from the same period. The results are in good agreement, indicating the suitability of the shallow water model and the presented numerical method for simulating floodplain inundation.

授权许可

Copyright © 2019 Sutatip Vichiantong et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Montri Maleewong.Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand, ku.ac.th.montri.m@ku.ac.th

推荐引用方式

Sutatip Vichiantong,Thida Pongsanguansin,Montri Maleewong. Flood Simulation by a Well-Balanced Finite Volume Method in Tapi River Basin, Thailand, 2017. Modelling and Simulation in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R. J. Leveque. (1992). Numerical Methods for Conservation Laws. DOI: 10.1016/j.advwatres.2013.09.019.
[2] K. Anastasiou, C. T. Chan. (1997). Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshs. International Journal for Numerical Methods in Fluids.24(11):1225-1245. DOI: 10.1016/j.advwatres.2013.09.019.
[3] E. F. Toro. (2001). Shock-Capturing Methods for Free-Surface Shallow Flows. DOI: 10.1016/j.advwatres.2013.09.019.
[4] Q. Liang, A. G. L. Borthwick. (2009). Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Computers & Fluids.38(2):221-234. DOI: 10.1016/j.advwatres.2013.09.019.
[5] E. F. Toro. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. DOI: 10.1016/j.advwatres.2013.09.019.
[6] S. J. Billett, E. F. Toro. (1997). On WAF-type schemes for multidimensional hyperbolic conservation laws. Journal of Computational Physics.130(1):1-24. DOI: 10.1016/j.advwatres.2013.09.019.
[7] H.-R. Vosoughifar, A. Dolatshah, S.-K. S. Shokouhi. (2013). Discretization of multidimensional mathematical equations of dam break phenomena using a novel approach of finite volume method. Journal of Applied Mathematics.2013-12. DOI: 10.1016/j.advwatres.2013.09.019.
[8] Y. Loukili, A. W. Soulaimani. (2007). Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation. International Journal for Computational Methods in Engineering Science and Mechanics.8(2):75-88. DOI: 10.1016/j.advwatres.2013.09.019.
[9] E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein. et al.(2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing.25(6):2050-2065. DOI: 10.1016/j.advwatres.2013.09.019.
[10] E. F. Toro, P. L. Roe. A hybridised high-order random choice method for quasi-linear hyperbolic systems. :701. DOI: 10.1016/j.advwatres.2013.09.019.
[11] M. Maleewong. (2011). Modified predictor-corrector WAF method for the shallow water equations with source terms. Mathematical Problems in Engineering.2011-17. DOI: 10.1016/j.advwatres.2013.09.019.
[12] . DOI: 10.1016/j.advwatres.2013.09.019.
[13] G. Kesserwani, Q. Liang. (2010). A discontinuous Galerkin algorithm for the two-dimensional shallow water equations. Computer Methods in Applied Mechanics and Engineering.199(49–52):3356-3368. DOI: 10.1016/j.advwatres.2013.09.019.
[14] R. J. Leveque. (2005). Finite Volume Method for Hyperbolic Problem. DOI: 10.1016/j.advwatres.2013.09.019.
[15] A. Bermudez, M. E. Vazquez. (1994). Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids.23(8):1049-1071. DOI: 10.1016/j.advwatres.2013.09.019.
[16] . DOI: 10.1016/j.advwatres.2013.09.019.
[17] E. F. Toro. (1992). Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.338(1649):43-68. DOI: 10.1016/j.advwatres.2013.09.019.
[18] G. Kesserwani, Q. Liang. (2010). Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Computers & Fluids.39(10):2040-2050. DOI: 10.1016/j.advwatres.2013.09.019.
[19] . DOI: 10.1016/j.advwatres.2013.09.019.
[20] R. J. Leveque. (1998). Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. Journal of Computational Physics.146(1):346-365. DOI: 10.1016/j.advwatres.2013.09.019.
[21] T. Pongsanguansin, M. Maleewong, K. Mekchay. (2016). Shallow-water simulations by a well-balanced WAF finite volume method: a case study to the great flood in 2011, Thailand. Computational Geosciences.20(6):1269-1285. DOI: 10.1016/j.advwatres.2013.09.019.
[22] E. D. Fernández-Nieto, G. Narbona-Reina. (2008). Extension of WAF type methods to non-homogeneous shallow water equations with pollutant. Journal of Scientific Computing.36(2):193-127. DOI: 10.1016/j.advwatres.2013.09.019.
[23] E. F. Toro. (1989). A weighted average flux method for hyperbolic conservation laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.423(1865):401-418. DOI: 10.1016/j.advwatres.2013.09.019.
[24] S. M. Amiri, N. Talebbeydokhti, A. Baghlani. (2013). A two-dimensional well-balanced numerical model for shallow water equations. Scientia Iranica.20(1):97-107. DOI: 10.1016/j.advwatres.2013.09.019.
[25] R. Ata, S. Pavan, S. Khelladi, E. F. Toro. et al.(2013). A Weighted Average Flux (WAF) scheme applied to shallow water equations for real-life applications. Advances in Water Resources.62:155-172. DOI: 10.1016/j.advwatres.2013.09.019.
[26] . DOI: 10.1016/j.advwatres.2013.09.019.
文献评价指标
浏览 17次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次