首页 » 文章 » 文章详细信息
Modelling and Simulation in Engineering Volume 2019 ,2019-01-17
Measurements of Tool Wear Parameters Using Machine Vision System
Research Article
Avinash A. Thakre 1 Aniruddha V. Lad 1 Kiran Mala 1
Show affiliations
DOI:10.1155/2019/1876489
Received 2018-10-08, accepted for publication 2018-12-23, Published 2018-12-23
PDF
摘要

Monitoring tool wear is very important in machining industry as it may result in loss of dimensional accuracy and quality of finished product. This work includes the development of machine vision system for the direct measurement of flank wear of carbide cutting tool inserts. This system consists of a digital camera to capture the tool wear image, a good light source to illuminate the tool, and a computer for image processing. A new approach of inline automatic calibration of a pixel is proposed in this work. The captured images of carbide inserts are processed, and the segmented tool wear zone has been obtained by image processing. The vision system extracts tool wear parameters such as average tool wear width, tool wear area, and tool wear perimeter. The results of the average tool wear width obtained from the vision system are experimentally validated with those obtained from the digital microscope. An average error of 3% was found for measurements of all 12 carbide inserts. Scanning electron micrographs of the wear zone indicate the severe abrasion marks and damage to the cutting edge for higher machining time. This study indicates that the efficient and reliable vision system can be developed to measure the tool wear parameters.

授权许可

Copyright © 2019 Avinash A. Thakre et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Avinash A. Thakre.Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India, vnit.ac.in.avinashathakre@gmail.com

推荐引用方式

Avinash A. Thakre,Aniruddha V. Lad,Kiran Mala. Measurements of Tool Wear Parameters Using Machine Vision System. Modelling and Simulation in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] G. Duan, Y.-W. Chen, T. Sukegawa. (2010). Automatic optical flank wear measurement of microdrills using level set for cutting plane segmentation. Machine Vision and Applications.21(5):667-676. DOI: 10.1016/s0890-6955(02)00266-3.
[2] D. A. Fadare, A. O. Oni. (2009). Development and application of a machine vision system for measurement of tool wear. ARPN Journal of Engineering and Applied Sciences.4(4):42-49. DOI: 10.1016/s0890-6955(02)00266-3.
[3] X. Yu, X. Lin, Y. Dai, K. Zhu. et al.(2017). Image edge detection based tool condition monitoring with morphological component analysis. ISA transactions.69:315-322. DOI: 10.1016/s0890-6955(02)00266-3.
[4] R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld. et al.(2010). Advanced monitoring of machining operations. CIRP Annals.59(2):717-739. DOI: 10.1016/s0890-6955(02)00266-3.
[5] H. H. Sahabi, M. M. Ratnam. (2009). Assessment of flank wear and nose radius wear from workpiece roughness profile in turning operation using machine vision. International Journal of Advanced Manufacturing Technology.43(1-2):11-21. DOI: 10.1016/s0890-6955(02)00266-3.
[6] D. M. D’Addona, R. Teti. (2013). Image data processing via neural networks for tool wear prediction. Procedia CIRP.12:252-257. DOI: 10.1016/s0890-6955(02)00266-3.
[7] K. N. Prasad, B. Ramamoorthy. (2001). Tool wear evaluation by stereo vision and prediction by artificial neural network. Journal of Materials Processing Technology.112(1):43-52. DOI: 10.1016/s0890-6955(02)00266-3.
[8] R. Schmitt, Y. Cai, A. Pavim. (2012). Machine vision system for inspecting flank wear on cutting tools. International Journal on Control System and Instrumentation.3(1):37-31. DOI: 10.1016/s0890-6955(02)00266-3.
[9] J. Jurkovic, M. Korosec, J. Kopac. (2005). New approach in tool wear measuring technique using CCD vision system. International Journal of Machine Tools and Manufacture.45(9):1023-1030. DOI: 10.1016/s0890-6955(02)00266-3.
[10] S. Kurada, C. Bradley. (1997). A machine vision system for tool wear assessment. Tribology International.30(4):295-304. DOI: 10.1016/s0890-6955(02)00266-3.
[11] S. Dutta, S. K. Pal, S. Mukhopadhyay, R. Sen. et al.(2013). Application of digital image processing in tool condition monitoring: a review. CIRP Journal of Manufacturing Science and Technology.6(3):212-232. DOI: 10.1016/s0890-6955(02)00266-3.
[12] M. Sortino. (2003). Application of statistical filtering for optical detection of tool wear. International Journal of Machine Tools and Manufacture.43(5):493-497. DOI: 10.1016/s0890-6955(02)00266-3.
[13] A. Devillez, S. Lesko, W. Mozer. (2004). Cutting tool crater wear measurement with white light interferometry. Wear.256(1-2):56-65. DOI: 10.1016/s0890-6955(02)00266-3.
[14] M. Castejón, E. Alegre, J. Barreiro, L. K. Hernández. et al.(2007). On-line tool wear monitoring using geometric descriptors from digital images. International Journal of Machine Tools and Manufacture.47(12-13):1847-1853. DOI: 10.1016/s0890-6955(02)00266-3.
[15] T. G. Dawson, T. R. Kurfess. (2005). Quantification of tool wear using white light interferometry and three-dimensional computational metrology. International Journal of Machine Tools and Manufacture.45(4-5):591-596. DOI: 10.1016/s0890-6955(02)00266-3.
[16] G. Xiong, J. Liu, A. Avila. Cutting tool wear measurement by using active contour model based image processing. :670-675. DOI: 10.1016/s0890-6955(02)00266-3.
[17] M. Danesh, K. Khalili. (2015). Determination of tool wear in turning process using undecimated wavelet transform and textural features. Procedia Technology.19:98-105. DOI: 10.1016/s0890-6955(02)00266-3.
[18] L. Fernández-Robles, G. Azzopardi, E. Alegre, N. Petkov. et al.(2017). Machine-vision-based identification of broken inserts in edge profile milling heads. Robotics and Computer-Integrated Manufacturing.44:276-283. DOI: 10.1016/s0890-6955(02)00266-3.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次