首页 » 文章 » 文章详细信息
Mobile Information Systems Volume 2019 ,2019-01-17
Assessing IEEE 802.11 and IEEE 802.16 as Backhauling Technologies for 3G Small Cells in Rural Areas of Developing Countries
Research Article
Javier Simó-Reigadas 1 Carlos Figuera 1 Eduardo Morgado 1 Esteban Municio 2 Andrés Martínez-Fernández 1
Show affiliations
DOI:10.1155/2019/4383945
Received 2018-06-27, accepted for publication 2018-12-09, Published 2018-12-09
PDF
摘要

Mobile networks are experiencing a great development in urban areas worldwide, and developing countries are not an exception. However, sparsely populated rural areas in developing regions usually do not have any access to terrestrial communications networks because operators cannot ensure enough revenues to justify the required investments. Therefore, alternative low-cost solutions are needed for both the access network and the backhaul network. In this sense, in order to provide rural 3G coverage in small villages, state-of-the-art approaches propose to use Small Cells in access networks and inexpensive multihop wireless networks based on WiFi for long distances (WiLD) or WiMAX for backhauling them. These technologies provide most of the required capabilities; however, there is no complete knowledge about the performance of WiFi and WiMAX in long-distance links under quality of service constraints. The aim of this work is to provide a detailed overview of the different alternatives for building rural wireless backhaul networks. We compare both IEEE 802.11n and IEEE 802.16 distance-aware analytical models and validate them by extensive simulations and field experiments. Also WiFi-based TDMA proprietary solutions are evaluated experimentally and compared. Finally, results are used to model a real study case in the Peruvian Amazon in order to illustrate that the performance provided by these technologies may be sufficient for the backhaul network of a rural 3G access network based on Small Cells.

授权许可

Copyright © 2019 Javier Simó-Reigadas et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Javier Simó-Reigadas.Rey Juan Carlos University, Department of Signal Theory and Communications, Madrid, Spain, urjc.es.javier.simo@urjc.es

推荐引用方式

Javier Simó-Reigadas,Carlos Figuera,Eduardo Morgado,Esteban Municio,Andrés Martínez-Fernández. Assessing IEEE 802.11 and IEEE 802.16 as Backhauling Technologies for 3G Small Cells in Rural Areas of Developing Countries. Mobile Information Systems ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. Senthilkumar, A. Krishnan. (2010). Nonsaturation throughput enhancement of IEEE 802.11 b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing.7(1):95-104. DOI: 10.1109/mcom.2016.7509376.
[2] R. P. Karrer, I. Matyasovszki, A. Botta, A. Pescapé. et al.Experimental evaluation and characterization of the magnets wireless backbone. :26-33. DOI: 10.1109/mcom.2016.7509376.
[3] C. Rey-Moreno, I. Bebea-Gonzalez, I. Foche-Perez, R. Quispe-Tacas. et al.A telemedicine WiFi network optimized for long distances in the amazonian jungle of Peru. :91-96. DOI: 10.1109/mcom.2016.7509376.
[4] G. Pei, T. R. Henderson. (2010). Validation of OFDM error rate model in ns-3. Boeing Research and Technology. DOI: 10.1109/mcom.2016.7509376.
[5] T. G. Itu. (2001). 1010: end-user multimedia QoS categories. . DOI: 10.1109/mcom.2016.7509376.
[6] J. Simo-Reigadas, E. Municio, E. Morgado, E. M. Castro. et al.Sharing low-cost wireless infrastructures with telecommunications operators for backhauling 3G services in deprived rural areas. :1-8. DOI: 10.1109/mcom.2016.7509376.
[7] IEEE. (802). 802.11-2012—IEEE standard for information technology exchange between systems local and metropolitan area networks: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. . DOI: 10.1109/mcom.2016.7509376.
[8] B. Raman, K. Chebrolu. Design and evaluation of a new MAC protocol for long-distance 802.11 mesh networks. :156-169. DOI: 10.1109/mcom.2016.7509376.
[9] C. Oestges, V. Erceg, A. J. Paulraj. (2004). Propagation modeling of MIMO multipolarized fixed wireless channels. IEEE Transactions on Vehicular Technology.53(3):644-654. DOI: 10.1109/mcom.2016.7509376.
[10] J. Simo-Reigadas, E. Municio, E. Morgado. (2015). Sharing low-cost wireless infrastructures with telecommunications operators to bring 3G services to rural communities. Computer Networks.93:245-259. DOI: 10.1109/mcom.2016.7509376.
[11] R. K. Patra, S. Nedevschi, S. Surana, A. Sheth. et al.(2007). WiLDNet: design and implementation of high performance WiFi based long distance networks. NSDI.1:1. DOI: 10.1109/mcom.2016.7509376.
[12] K. Chebrolu, B. Raman, S. Sen. Long-distance 802.11 b links: performance measurements and experience. :74-85. DOI: 10.1109/mcom.2016.7509376.
[13] S. Salmerón-Ntutumu, J. Simó-Reigadas, R. Patra. Comparison of MAC protocols for 802.11-based long distance networks. . DOI: 10.1109/mcom.2016.7509376.
[14] A. Botta, A. Dainotti, A. Pescapè. (2012). A tool for the generation of realistic network workload for emerging networking scenarios. Computer Networks.56(15):3531-3547. DOI: 10.1109/mcom.2016.7509376.
[15] I. Papapanagiotou, G. S. Paschos, S. A. Kotsopoulos, M. Devetsikiotis. et al.Extension and comparison of QOS-enabled wi-fi models in the presence of errors. :2530-2535. DOI: 10.1109/mcom.2016.7509376.
[16] AirMAX TDM SYSTEM. (December 2018). Product datasheet. . DOI: 10.1109/mcom.2016.7509376.
[17] J. M. Vella, S. Zammit. Performance improvement of long distance MIMO links using cross polarized antennas. :1287-1292. DOI: 10.1109/mcom.2016.7509376.
[18] L. Jiang, L. Thiele, A. Brylka, S. Jaeckel. et al.Polarization characteristics of multiple-input multiple-output channels. . DOI: 10.1109/mcom.2016.7509376.
[19] R. P. Karrer, I. Matyasovszki, A. Botta, A. Pescapé. et al.Magnets-experiences from deploying a joint research-operational next-generation wireless access network testbed. :1-10. DOI: 10.1109/mcom.2016.7509376.
[20] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin. et al.(2008). Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications.7(4):1276-1286. DOI: 10.1109/mcom.2016.7509376.
[21] S. Rinaldi, P. Ferrari, A. Flammini, F. Gringoli. et al.An application of IEEE 802.11 ac to smart grid automation based on IEC 61850. :4645. DOI: 10.1109/mcom.2016.7509376.
[22] . DOI: 10.1109/mcom.2016.7509376.
[23] V. Popovskiy, V. Loshakov, O. Philipenko, A. Martinchuk. et al.Results of development of tropospheric communications system. :193-195. DOI: 10.1109/mcom.2016.7509376.
[24] J. S. Reigadas, A. Martinez-Fernandez, J. Ramos-Lopez, J. Seoane-Pascual. et al.(2010). Modeling and optimizing IEEE 802.11 DCF for long-distance links. IEEE Transactions on Mobile Computing.9(6). DOI: 10.1109/mcom.2016.7509376.
[25] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin. et al.(2008). Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission channel and capture effects. IEEE Transactions on Communications.56(7):1178-1188. DOI: 10.1109/mcom.2016.7509376.
[26] IEEE. (2009). 802.16-2009—IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems. . DOI: 10.1109/mcom.2016.7509376.
[27] A. Lozano, N. Jindal. (2010). Transmit diversity vs. spatial multiplexing in modern MIMO systems. IEEE Transactions on Wireless Communications.9(1):186-197. DOI: 10.1109/mcom.2016.7509376.
[28] ETSI. (2015). Broadband Radio Access Networks (BRAN); broadband wireless access and backhauling for remote rural communities. . DOI: 10.1109/mcom.2016.7509376.
[29] NV2 Manual. . DOI: 10.1109/mcom.2016.7509376.
[30] F. Bohagen, P. Orten, G. E. Oien. (2007). Design of optimal high-rank line-of-sight MIMO channels. IEEE Transactions on Wireless Communications.6(4):1420-1425. DOI: 10.1109/mcom.2016.7509376.
[31] I. Tinnirello, G. Bianchi, Y. Xiao. (2010). Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology.59(3):1055-1067. DOI: 10.1109/mcom.2016.7509376.
[32] I. Sarris, A. R. Nix. (2007). Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component. IEEE Transactions on Vehicular Technology.56(4):2194-2202. DOI: 10.1109/mcom.2016.7509376.
[33] G. Bianchi, I. Tinnirello. (2005). Remarks on IEEE 802.11 DCF performance analysis. IEEE Communications Letters.9(8):765-767. DOI: 10.1109/mcom.2016.7509376.
[34] A. Martinez-Fernandez, J. Vidal, J. Simo-Reigadas. (2016). The TUCAN3G project: wireless technologies for isolated rural communities in developing countries based on 3G small cell deployments. IEEE Communications Magazine.54(7):36-43. DOI: 10.1109/mcom.2016.7509376.
[35] N. Baldo, M. Requena-Esteso, J. Núñez-Martínez. Validation of the IEEE 802.11 MAC model in the ns3 simulator using the extreme testbed. :64. DOI: 10.1109/mcom.2016.7509376.
[36] Alvarion. (December 2018). Datasheet 4Motion 802.16e CPE BreezeMAX Si 4000. . DOI: 10.1109/mcom.2016.7509376.
[37] Ubiquity networks. (December 2018). Datasheet Nanostation M5 5GHz. . DOI: 10.1109/mcom.2016.7509376.
[38] J. Martin, B. Li, W. Pressly, J. Westall. et al.WiMAX performance at 4.9 GHz. . DOI: 10.1109/mcom.2016.7509376.
文献评价指标
浏览 28次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次