首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2019 ,2019-01-16
Broadband Dielectric Properties of Fe2O3·H2O Nanorods/Epoxy Resin Composites
Research Article
Darya Meisak 1 , 2 Jan Macutkevic 1 Dzmitry Bychanok 2 , 3 Algirdas Selskis 4 Juras Banys 1 Polina Kuzhir 2 , 3
Show affiliations
DOI:10.1155/2019/9756920
Received 2018-05-29, accepted for publication 2018-10-31, Published 2018-10-31
PDF
摘要

A series of polymer composites based on epoxy resin with a 5–40 vol.% concentration of goethite (Fe2O3·H2O) nanorods was produced. The electrical percolation threshold in these composites was determined as 30 vol.% of nanorods. The dielectric properties of the composites both below and above the percolation threshold were studied in a wide temperature (200 K–450 K) and frequency (from Hz to THz) ranges. The dielectric properties of composites below the percolation threshold are mainly determined by the relaxation in a pure polymer matrix. The electrical properties of composites above the percolation threshold are determined by the percolation network, which is formed by the goethite nanorods inside the polymer matrix. Due to the finite conductivity of the epoxy resin, the electrical conductivity at high temperatures occurs in the composites both above and below the percolation threshold.

授权许可

Copyright © 2019 Darya Meisak et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Darya Meisak.Physics Faculty, Vilnius University, Vilnius 00122, Lithuania, vu.lt;Research Institute for Nuclear Problems, Belarusian State University, Minsk 220030, Belarus, bsu.by.dariameysak@gmail.com

推荐引用方式

Darya Meisak,Jan Macutkevic,Dzmitry Bychanok,Algirdas Selskis,Juras Banys,Polina Kuzhir. Broadband Dielectric Properties of Fe2O3·H2O Nanorods/Epoxy Resin Composites. Journal of Nanomaterials ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Macutkevic, P. P. Kuzhir, A. G. Paddubskaya, J. Banys. et al.(2013). Broadband dielectric/electric properties of epoxy thin films filled with multiwalled carbon nanotubes. Journal of Nanophotonics.7(1, article 073593). DOI: 10.1166/jnn.2013.7547.
[2] I. Kranauskaite, J. Macutkevic, J. Banys, E. Talik. et al.(2015). Synergy effects in the electrical conductivity behavior of onion-like carbon and multiwalled carbon nanotubes composites. Physica Status Solidi (B).252(8):1799-1803. DOI: 10.1166/jnn.2013.7547.
[3] J. Grigas. (1996). Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials. DOI: 10.1166/jnn.2013.7547.
[4] J. Banys, J. Macutkevic, V. Samulionis, A. Brilingas. et al.(2004). Dielectric and ultrasonic investigation of phase transition in cuinps crystals. Phase Transitions.77(4):345-358. DOI: 10.1166/jnn.2013.7547.
[5] S. Bellucci, L. Coderoni, F. Micciulla, G. Rinaldi. et al.(2011). The electrical properties of epoxy resin composites filled with Cnts and carbon black. Journal of Nanoscience and Nanotechnology.11(10):9110-9117. DOI: 10.1166/jnn.2013.7547.
[6] A. K. Jonscher. (1975). New interpretation of dielectric loss peaks. Nature.256(5518):566-568. DOI: 10.1166/jnn.2013.7547.
[7] H. M. Kim, M. S. Choi, J. Joo, S. J. Cho. et al.(2006). Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Physical Review B.74(5, article 054202). DOI: 10.1166/jnn.2013.7547.
[8] . DOI: 10.1166/jnn.2013.7547.
[9] W. Bauhofer, J. Z. Kovacs. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology.69(10):1486-1498. DOI: 10.1166/jnn.2013.7547.
[10] R. Mariño-Fernández, S. H. Masunaga, N. Fontaíña-Troitiño, M. P. Morales. et al.(2011). Goethite (-FeOOH) nanorods as suitable antiferromagnetic substrates. The Journal of Physical Chemistry C.115(29):13991-13999. DOI: 10.1166/jnn.2013.7547.
[11] G. Y. Yurkov, S. P. Gubin, D. A. Pankratov, Y. A. Koksharov. et al.(2002). Iron (III) oxide nanoparticles in a polyethylene matrix. Inorganic Materials.38(2):137-145. DOI: 10.1166/jnn.2013.7547.
[12] D. Bychanok, P. Kuzhir, S. Maksimenko, S. Bellucci. et al.(2013). Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. Journal of Applied Physics.113(12, article 124103). DOI: 10.1166/jnn.2013.7547.
[13] E. Temizel, E. Ayan, M. Şenel, H. Erdemi. et al.(2011). Synthesis, conductivity and magnetic properties of poly(N-pyrrole phosphonic acid)–FeO nanocomposite. Materials Chemistry and Physics.131(1-2):284-291. DOI: 10.1166/jnn.2013.7547.
[14] D. Bychanok, G. Gorokhov, D. Meisak, P. Kuzhir. et al.(2017). Design of carbon nanotube-based broadband radar absorber for Ka-band frequency range. Progress In Electromagnetics Research M.53:9-16. DOI: 10.1166/jnn.2013.7547.
[15] Y. Deng, H. W. J. Blöte. (2005). Monte Carlo study of the site-percolation model in two and three dimensions. Physical Review E.72(1, article 016126). DOI: 10.1166/jnn.2013.7547.
[16] J. Macutkevic, D. Seliuta, G. Valušis, J. Banys. et al.(2009). High dielectric permittivity of percolative composites based on onion-like carbon. Applied Physics Letters.95(11, article 112901). DOI: 10.1166/jnn.2013.7547.
[17] S. Kirkpatrick. (1976). Percolation phenomena in higher dimensions: approach to the mean-field limit. Physical Review Letters.36(2):69-72. DOI: 10.1166/jnn.2013.7547.
[18] G. Inzelt. (2008). Conducting Polymers: a New Era in Electrochemistry. DOI: 10.1166/jnn.2013.7547.
[19] D. van der Putten, J. T. Moonen, H. B. Brom, J. C. M. Brokken-Zijp. et al.(1992). Evidence for superlocalization on a fractal network in conductive carbon-black–polymer composites. Physical Review Letters.69(3):494-497. DOI: 10.1166/jnn.2013.7547.
[20] R. B. Yang, W. F. Liang, W. S. Lin, H. M. Lin. et al.(2011). Microwave absorbing properties of iron nanowire at x-band frequencies. Journal of Applied Physics.109(7, article 07B527). DOI: 10.1166/jnn.2013.7547.
[21] J. Macutkevic, P. Kuzhir, A. Paddubskaya, S. Maksimenko. et al.(2013). Epoxy resin/carbon black composites below the percolation threshold. Journal of Nanoscience and Nanotechnology.13(8):5434-5439. DOI: 10.1166/jnn.2013.7547.
[22] K. J. Vinoy, R. M. Jha. (1996). Radar Absorbing Materials: From Theory to Design and Characterization. DOI: 10.1166/jnn.2013.7547.
[23] F. Qin, C. Brosseau. (2012). A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Journal of Applied Physics.111(6, article 061301). DOI: 10.1166/jnn.2013.7547.
[24] M. Krajewski, W. S. Lin, H. M. Lin, K. Brzozka. et al.(2015). Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction. Beilstein Journal of Nanotechnology.6:1652-1660. DOI: 10.1166/jnn.2013.7547.
[25] M. Fu, Y. Yu, J. J. Xie, L. P. Wang. et al.(2009). Significant influence of film thickness on the percolation threshold of multiwall carbon nanotube/low density polyethylene composite films. Applied Physics Letters.94(1, article 012904). DOI: 10.1166/jnn.2013.7547.
[26] M. Iacob, G. Stiubianu, C. Tugui, L. Ursu. et al.(2015). Goethite nanorods as a cheap and effective filler for siloxane nanocomposite elastomers. RSC Advances.5(56):45439-45445. DOI: 10.1166/jnn.2013.7547.
[27] K. Ahmad, W. Pan, S.-L. Shi. (2006). Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Applied Physics Letters.89(13, article 133122). DOI: 10.1166/jnn.2013.7547.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次