首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2019 ,2019-01-17
In Vitro and In Vivo Evaluation of Desogestrel-Loaded Poly(D,L-lactic Acid) Nanoparticles
Research Article
Hui Lin 1 Guoyong Jia 2 Peng Sun 1 Liqiao Zhu 1 Jinna Chen 3 Qiyue Wan 3 Lingyun Xiao 4 Xianghong Liu 3
Show affiliations
DOI:10.1155/2019/8491269
Received 2018-06-07, accepted for publication 2018-10-28, Published 2018-10-28
PDF
摘要

The aim of this study was to explore the synthesis parameters of desogestrel-polylactic acid nanoparticles (DG-PLA-NPs), optimise the preparation technology, and elucidate the in vitro release characteristics. Considering encapsulation efficiency (EE) and drug loading as the main evaluation indexes, DG-PLA-NPs were prepared using the modified emulsion solvent diffusion method and single factor and orthogonal design tests were performed to investigate the influencing factors and optimise the preparation method. Morphology of the nanoparticles was observed using transmission electron microscopy (TEM), average particle diameter and distribution were determined using dynamic laser particle size analysis, and the EE and drug loading were measured using reversed-phase high-performance liquid chromatography. Among the eight factors, the drug-to-material ratio, water-to-organic phase ratio, and polyvinyl alcohol (PVA) concentration significantly affected the NP EE. In the optimised formulation, the PLA/DG ratio, PVA concentration, and oil-to-water phase ratio were 5, 0.5%, and 5, respectively. The DG-PLA-NPs prepared with the optimised formulation were round or spherical with an average diameter of 209 nm, 79.60% EE, and 6.81% drug loading capacity. The polydispersity index was 0.181, and the zeta potential was −27.37 mV. The in vitro releases of both DG and DG-PLA-NPs conformed to the Weibull equation. The DG-PLA-NPs released desogestrel rapidly in the early stages but slowly at later stages, indicating that compared to DG, the DG-PLA-NPs had obvious sustained-release effects. The DG-PLA-NPs prepared by the modified emulsion solvent diffusion method were small, simple to prepare, and had high drug loading with promising application prospects.

授权许可

Copyright © 2019 Hui Lin et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Peng Sun.School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China, sdutcm.edu.cn.sunpeng369@126.com
2. Xianghong Liu.Department of Pharmaceutical Sciences, Qilu Hospital affiliated to Shandong University, Jinan 250012, China, qiluhospital.com.liuxianghong666@126.com

推荐引用方式

Hui Lin,Guoyong Jia,Peng Sun,Liqiao Zhu,Jinna Chen,Qiyue Wan,Lingyun Xiao,Xianghong Liu. In Vitro and In Vivo Evaluation of Desogestrel-Loaded Poly(D,L-lactic Acid) Nanoparticles. Journal of Nanomaterials ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] C. P. Reis, R. J. Neufeld, A. J. Ribeiro, F. Veiga. et al.(2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine.2(1):8-21. DOI: 10.1097/00003081-199538040-00017.
[2] R. A. Kroll, M. A. Pagel, L. L. Muldoon, L. L. Muldoon. et al.(1998). Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the Blood-Brain and/or blood-tumor barriers. Neurosurgery.43(4):879-886. DOI: 10.1097/00003081-199538040-00017.
[3] J. C. Li, N. Zhu, J. X. Zhu, W. J. Zhang. et al.(2015). Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol. Medical Science Monitor.21:3298-3310. DOI: 10.1097/00003081-199538040-00017.
[4] J. Xiao, H. Yu. (2017). Gemcitabine conjugated chitosan and double antibodies (Abc-GC-gemcitabine nanoparticles) enhanced cytoplasmic uptake of gemcitabine and inhibit proliferation and metastasis in human SW1990 pancreatic cancer cells. Medical Science Monitor.23:1613-1620. DOI: 10.1097/00003081-199538040-00017.
[5] B. Devrim, K. Canefe. (2006). Preparation and evaluation of modified release ibuprofen microspheres with acrylic polymers (Eudragit) by quasi-emulsion solvent diffusion method: effect of variables. Acta Poloniae Pharmaceutica.63(6):521-534. DOI: 10.1097/00003081-199538040-00017.
[6] G. Mittal, D. K. Sahana, V. Bhardwaj, M. N. V. Ravi Kumar. et al.(2007). Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior and. Journal of Controlled Release.119(1):77-85. DOI: 10.1097/00003081-199538040-00017.
[7] A. Esmaeili, M. Ebrahimzadeh. (2015). Preparation of polyamide nanocapsules of L. delivery with studies. AAPS Pharm Sci Tech.16(2):242-249. DOI: 10.1097/00003081-199538040-00017.
[8] K. Tahara, T. Sakai, H. Yamamoto, H. Takeuchi. et al.(2011). Improvements in transfection efficiency with chitosan modified poly (DL-lactide-co-glycolide) nanospheres prepared by the emulsion solvent diffusion method, for gene delivery. Chem Pharm Bull.59(3):298-301. DOI: 10.1097/00003081-199538040-00017.
[9] D. Bhadra, S. Bhadra, P. Jain, N. K. Jain. et al.(2002). Pegnology: a review of PEG-ylated systems. Pharmazie.57(1):5-29. DOI: 10.1097/00003081-199538040-00017.
[10] J. Matsumoto, Y. Nakada, K. Sakurai, T. Nakamura. et al.(1999). Preparation of nanoparticles consisted of poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) and their evaluation in vitro. International Journal of Pharmaceutics.185(1):93-101. DOI: 10.1097/00003081-199538040-00017.
[11] R. Langer. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Accounts of Chemical Research.33(2):94-101. DOI: 10.1097/00003081-199538040-00017.
[12] H. Murakami, M. Kobayashi, H. Takeuchi, Y. Kawashima. et al.(1999). Preparation of poly (DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. International Journal of Pharmaceutics.187(2):143-152. DOI: 10.1097/00003081-199538040-00017.
[13] R. T. Burkman. (1993). Lipid metabolism effects with desogestrel-containing oral contraceptives. American Journal of Obstetrics and Gynecology.168(3):1033-1040. DOI: 10.1097/00003081-199538040-00017.
[14] A. Millan-Oropeza, R. Rebois, M. David, F. Moussa. et al.(2017). Attenuated total reflection Fourier transform infrared (ATR FT-IR) for rapid determination of microbial cell lipid content: correlation with gas chromatography-mass spectrometry (GC-MS). Applied Spectroscopy.71(10):2344-2352. DOI: 10.1097/00003081-199538040-00017.
[15] J. Siepmann, F. Siepmann. (2006). Microparticles used as drug delivery systems. Smart Colloidal Materials.133:15. DOI: 10.1097/00003081-199538040-00017.
[16] B. Kaplan. (2016). Desogestrel, norgestimate, and gestodene: the newer progestins. The Annals of Pharmacotherapy.29(7-8):736-742. DOI: 10.1097/00003081-199538040-00017.
[17] P. Siafaka, N. Üstündağ Okur, E. Karavas, D. Bikiaris. et al.(2016). Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. International Journal of Molecular Sciences.17(9). DOI: 10.1097/00003081-199538040-00017.
[18] D. K. Dutta, I. Dutta. (2013). Desogestrel mini pill: is this safe in lactating mother?. Journal of the Indian Medical Association.111(8):553-555. DOI: 10.1097/00003081-199538040-00017.
[19] S. Galindo-Rodriguez, E. Allemann, H. Fessi, E. Doelker. et al.(2004). Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharmaceutical Research.21(8):1428-1439. DOI: 10.1097/00003081-199538040-00017.
[20] V. Halpern, R. M. Stalter, D. H. Owen, L. J. Dorflinger. et al.(2015). Towards the development of a longer-acting injectable contraceptive: past research and current trends. Contraception.92(1):3-9. DOI: 10.1097/00003081-199538040-00017.
[21] S. Hua, M. B. C. de Matos, J. M. Metselaar, G. Storm. et al.(2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in Pharmacology.9:790. DOI: 10.1097/00003081-199538040-00017.
[22] C. Scala, U. Leone Roberti Maggiore, V. Remorgida, P. L. Venturini. et al.(2013). Drug safety evaluation of desogestrel. Expert Opinion on Drug Safety.12(3):433-444. DOI: 10.1097/00003081-199538040-00017.
[23] V. R. S. Uppoor. (2001). Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. Journal of Controlled Release.72(1–3):127-132. DOI: 10.1097/00003081-199538040-00017.
[24] B. Han, H. T. Wang, H. Y. Liu, H. Hong. et al.(2010). Preparation of pingyangmycin PLGA microspheres and related in vitro/in vivo studies. International Journal of Pharmaceutics.398(1-2):130-136. DOI: 10.1097/00003081-199538040-00017.
[25] N. Kamaly, B. Yameen, J. Wu, O. C. Farokhzad. et al.(2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical Reviews.116(4):2602-2663. DOI: 10.1097/00003081-199538040-00017.
[26] H.-Y. Kwon, J.-Y. Lee, S.-W. Choi, Y. Jang. et al.(2001). Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects.182(1-3):123-130. DOI: 10.1097/00003081-199538040-00017.
[27] M. Luo, Y. Y. Jia, Z. W. Jing, C. Li. et al.(2018). Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids and Surfaces. B, Biointerfaces.164:11-19. DOI: 10.1097/00003081-199538040-00017.
[28] A. Di Florio, D. Alexander, P. J. Schmidt, D. R. Rubinow. et al.(2018). Progesterone and plasma metabolites in women with and in those without premenstrual dysphoric disorder. Depression and Anxiety.35(12):1168-1177. DOI: 10.1097/00003081-199538040-00017.
[29] J. Hu, Z. Tang, X. Qiu, X. Pang. et al.(2005). Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly (-lactide)s. Biomacromolecules.6(5):2843-2850. DOI: 10.1097/00003081-199538040-00017.
[30] C. E. Mora-Huertas, O. Garrigues, H. Fessi, A. Elaissari. et al.(2012). Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: comparative study. European Journal of Pharmaceutics and Biopharmaceutics.80(1):235-239. DOI: 10.1097/00003081-199538040-00017.
[31] J. O. Nothling, K. G. M. De Cramer. (2018). Comparing the values of progesterone in the blood of bitches as measured with a chemiluminescence immunoassay and a radioimmunoassay. Reproduction in Domestic Animals.53(5):1136-1141. DOI: 10.1097/00003081-199538040-00017.
[32] W. Fan, J. Li, L. Yuan, J. Chen. et al.(2018). Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Delivery.25(1):1004-1012. DOI: 10.1097/00003081-199538040-00017.
[33] A. Benabdelaziz, S. Boudjemai, A. Benzaid, R. Khelili. et al.(2014). In-house preparation and evaluation of I-histamine progesterone tracer for radioimmunoassay of progesterone. Journal of Immunoassay & Immunochemistry.36(5):478-486. DOI: 10.1097/00003081-199538040-00017.
[34] Marı́a J. Blanco-Prı́eto, K. Besseghir, O. Zerbe, D. Andris. et al.(2000). In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres. Journal of Controlled Release.67(1):19-28. DOI: 10.1097/00003081-199538040-00017.
[35] M. Kataoka, S. Itsubata, Y. Masaoka, S. Sakuma. et al.(2011). dissolution/permeation system to predict the oral absorption of poorly water-soluble drugs: effect of food and dose strength on it. Biological & Pharmaceutical Bulletin.34(3):401-407. DOI: 10.1097/00003081-199538040-00017.
[36] S. Kommareddy, S. B. Tiwari, M. M. Amiji. (2016). Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technology in Cancer Research & Treatment.4(6):615-625. DOI: 10.1097/00003081-199538040-00017.
[37] M. Moritz, M. Geszke-Moritz. (2015). Recent developments in the application of polymeric nanoparticles as drug carriers. Advances in Clinical and Experimental Medicine.24(5):749-758. DOI: 10.1097/00003081-199538040-00017.
[38] J. W. Townsend, R. Sitruk-Ware, K. Williams, I. Askew. et al.(2011). New strategies for providing hormonal contraception in developing countries. Contraception.83(5):405-409. DOI: 10.1097/00003081-199538040-00017.
[39] L. B. Finer, S. K. Henshaw. (2006). Disparities in rates of unintended pregnancy in the United States, 1994 and 2001. Perspect Sex Reprod Health.38(2):90-96. DOI: 10.1097/00003081-199538040-00017.
[40] H. M. Redhead, S. S. Davis, L. Illum. (2001). Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. Journal of Controlled Release.70(3):353-363. DOI: 10.1097/00003081-199538040-00017.
[41] M. Lee, S. W. Kim. (2005). Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharmaceutical Research.22(1):1-10. DOI: 10.1097/00003081-199538040-00017.
[42] A. Jin, Y. Zhang, J. Jiao, J. Zhu. et al.(2000). Studies on the toxicity of polymer of glycolide and lactide (PLGA) and the anti-fertility effect of levonorgestrel (LNG). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.17(2):125-128. DOI: 10.1097/00003081-199538040-00017.
[43] D. Janagam, L. Wang, S. Ananthula, J. Johnson. et al.(2016). An accelerated release study to evaluate long-acting contraceptive levonorgestrel-containing in situ forming depot systems. Pharmaceutics.8(3). DOI: 10.1097/00003081-199538040-00017.
[44] M. A. Amini, M. A. Faramarzi, K. Gilani, E. Moazeni. et al.(2014). Production, characterisation, and nebulisation performance of budesonide-loaded PLA nanoparticles. Journal of Microencapsulation.31(5):422-429. DOI: 10.1097/00003081-199538040-00017.
[45] S. Mittal. (2014). Emergency contraception - potential for women’s health. Indian Journal of Medical Research.140:S45-S52. DOI: 10.1097/00003081-199538040-00017.
[46] Y. Sun, J. Wang, X. Zhang, Z. J. Zhang. et al.(2008). Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres: in vitro and in vivo studies. Journal of Controlled Release.129(3):192-199. DOI: 10.1097/00003081-199538040-00017.
[47] D. Matejicek, V. Kuban. (2007). High performance liquid chromatography/ion-trap mass spectrometry for separation and simultaneous determination of ethynylestradiol, gestodene, levonorgestrel, cyproterone acetate and desogestrel. Analytica Chimica Acta.588(2):304-315. DOI: 10.1097/00003081-199538040-00017.
[48] G. Ahmadi Lakalayeh, M. Rahvar, E. Haririan, R. Karimi. et al.(2017). Comparative study of different polymeric coatings for the next-generation magnesium-based biodegradable stents. Artificial Cells, Nanomedicine, and Biotechnology.46(7):1380-1389. DOI: 10.1097/00003081-199538040-00017.
[49] A. Gandhi, S. Guttikar, P. Trivedi. (2015). High-sensitivity simultaneous liquid chromatography-tandem mass spectrometry assay of ethinyl estradiol and levonorgestrel in human plasma. Journal of Pharmaceutical Analysis.5(5):316-326. DOI: 10.1097/00003081-199538040-00017.
[50] G. Grandi, A. Cagnacci, A. Volpe. (2013). Pharmacokinetic evaluation of desogestrel as a female contraceptive. Expert Opinion on Drug Metabolism & Toxicology.10(1):1-10. DOI: 10.1097/00003081-199538040-00017.
[51] J. Lee, S. C. Lee, G. Acharya, C. J. Chang. et al.(2003). Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharmaceutical Research.20(7):1022-1030. DOI: 10.1097/00003081-199538040-00017.
[52] S. C. Stone. (1995). Desogestrel. Clinical Obstetrics and Gynecology.38(4):821-828. DOI: 10.1097/00003081-199538040-00017.
[53] B. Winner, J. F. Peipert, Q. Zhao, C. Buckel. et al.(2012). Effectiveness of long-acting reversible contraception. The New England Journal of Medicine.366(21):1998-2007. DOI: 10.1097/00003081-199538040-00017.
[54] G. Lambert, E. Fattal, P. Couvreur. (2001). Nanoparticulate systems for the delivery of antisense oligonucleotides. Advanced Drug Delivery Reviews.47(1):99-112. DOI: 10.1097/00003081-199538040-00017.
[55] A. Vila, A. Sanchez, M. Tobio, P. Calvo. et al.(2002). Design of biodegradable particles for protein delivery. Journal of Controlled Release.78(1–3):15-24. DOI: 10.1097/00003081-199538040-00017.
[56] D. J. Burgess, D. J. Crommelin, A. S. Hussain, M. L. Chen. et al.(2004). Assuring quality and performance of sustained and controlled release parenterals: EUFEPS workshop report. AAPS Pharm Sci.6(1):100-111. DOI: 10.1097/00003081-199538040-00017.
[57] D. J. Burgess, A. S. Hussain, T. S. Ingallinera, M. L. Chen. et al.(2002). Assuring quality and performance of sustained and controlled release parenterals: workshop report. AAPS PharmSci.4(2):13-23. DOI: 10.1097/00003081-199538040-00017.
[58] B. N. Tran, H. T. Nguyen, J. O. Kim, C. S. Yong. et al.(2017). Developing combination of artesunate with paclitaxel loaded into poly-d, l-lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Drug Development and Industrial Pharmacy.43(12):1952-1962. DOI: 10.1097/00003081-199538040-00017.
[59] H. Murakami, M. Kobayashi, H. Takeuchi, Y. Kawashima. et al.(2000). Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technology.107(1-2):137-143. DOI: 10.1097/00003081-199538040-00017.
[60] E. Ghasemian, A. Vatanara, A. Rouholamini Najafabadi, M. Rouini. et al.(2013). Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. Daru.21(1):68. DOI: 10.1097/00003081-199538040-00017.
[61] L. Zhu, D. Wang, X. Wei, X. Zhu. et al.(2013). Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. Journal of Controlled Release.169(3):228-238. DOI: 10.1097/00003081-199538040-00017.
[62] S. Lello, A. Cavani. (2014). Ethynilestradiol 20 mcg plus levonorgestrel 100 mcg: clinical pharmacology. International Journal of Endocrinology.2014-9. DOI: 10.1097/00003081-199538040-00017.
[63] Z. Ge, R. Ma, G. Xu, Z. Chen. et al.(2018). Development and in vitro release of isoniazid and rifampicin-loaded bovine serum albumin nanoparticles. Medical Science Monitor.24:473-478. DOI: 10.1097/00003081-199538040-00017.
[64] J. R. Meendering, B. N. Torgrimson, N. P. Miller, P. F. Kaplan. et al.(2009). Ethinyl estradiol-to-desogestrel ratio impacts endothelial function in young women. Contraception.79(1):41-49. DOI: 10.1097/00003081-199538040-00017.
[65] K. Park. (2014). Controlled drug delivery systems: past forward and future back. Journal of Controlled Release.190:3-8. DOI: 10.1097/00003081-199538040-00017.
[66] N. Ensari, H. Tutar, O. Ekinci, M. B. Ugur. et al.(2015). Effects of polylactic acid film on middle ear mucosa and cochlear function in Guinea pigs. European Archives of Oto-Rhino-Laryngology.272(5):1091-1097. DOI: 10.1097/00003081-199538040-00017.
[67] D. N. Bikiaris, G. Z. Papageorgiou, S. A. Papadimitriou, E. Karavas. et al.(2009). Novel biodegradable polyester poly (propylene succinate): synthesis and application in the preparation of solid dispersions and nanoparticles of a water-soluble drug. AAPS PharmSciTech.10(1):138-146. DOI: 10.1097/00003081-199538040-00017.
[68] S. Leelaphiwat, T. Jongwutiwes, S. Lertvikool, C. Tabcharoen. et al.(2015). Comparison of desogestrel/ethinyl estradiol plus spironolactone versus cyproterone acetate/ethinyl estradiol in the treatment of polycystic ovary syndrome: a randomized controlled trial. The Journal of Obstetrics and Gynaecology Research.41(3):402-410. DOI: 10.1097/00003081-199538040-00017.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次