首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2019 ,2019-01-15
Growth Kinetics and Sensing Features of Colloidal Silver Nanoplates
Research Article
Giuseppe Compagnini 1 Marcello Condorelli 1 Maria E. Fragalà 1 Vittorio Scardaci 1 Ilaria Tinnirello 1 Orazio Puglisi 1 Fortunato Neri 2 Enza Fazio 2
Show affiliations
DOI:10.1155/2019/7084731
Received 2018-07-29, accepted for publication 2018-10-28, Published 2018-10-28
PDF
摘要

This paper presents the growth mechanisms and the plasmon sensing features for a large class of silver nanoplates obtained in the colloidal form. The synthesis is conducted by seed-mediated growth and leads to plates with aspect ratios as large as 20, having localized surface plasmon resonances extending deeply into the infrared spectral region (1000 nm and above). We measure plasmon sensitivity by varying the colloidal local refractive index, and Δλ/Δn sensitivity values up to 500 nm/RIU are obtained. Theoretical considerations regarding the correlation between the refractive index sensitivity and the position of the main localized plasmon resonance band demonstrate that plasmon sensitivity does not depend directly on the nanoparticle shape and aspect ratio.

授权许可

Copyright © 2019 Giuseppe Compagnini et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Giuseppe Compagnini.Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, Catania 95125, Italy, unict.it.gcompagnini@unict.it

推荐引用方式

Giuseppe Compagnini,Marcello Condorelli,Maria E. Fragalà,Vittorio Scardaci,Ilaria Tinnirello,Orazio Puglisi,Fortunato Neri,Enza Fazio. Growth Kinetics and Sensing Features of Colloidal Silver Nanoplates. Journal of Nanomaterials ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. Biswas, P. Kumbhakar. (2018). Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties. Applied Physics A: Materials Science & Processing.124(1):6. DOI: 10.1007/978-4-431-56556-7.
[2] D. J. Lockwood. (2017). Noble Metal Nanoparticles: Preparation, Composite Nanostructures, Biodecoration and Collective Properties. DOI: 10.1007/978-4-431-56556-7.
[3] W. Niu, L. Zhang, G. Xu. (2013). Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale.5(8):3172-3181. DOI: 10.1007/978-4-431-56556-7.
[4] S. Agnihotri, S. Mukherji, S. Mukherji. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances.4(8):3974-3983. DOI: 10.1007/978-4-431-56556-7.
[5] Y. Xia, P. Yang, Y. Sun, Y. Wu. et al.(2003). One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials.15(5):353-389. DOI: 10.1007/978-4-431-56556-7.
[6] M. M. Miller, A. A. Lazarides. (2005). Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. The Journal of Physical Chemistry B.109(46):21556-21565. DOI: 10.1007/978-4-431-56556-7.
[7] K. Kneipp. (2007). Surface-enhanced Raman scattering. Physics Today.60(11):40-46. DOI: 10.1007/978-4-431-56556-7.
[8] D. L. Feldheim, C. A. Foss. (2002). Metal Nanoparticles: Synthesis, Characterization, and Applications. DOI: 10.1007/978-4-431-56556-7.
[9] X. Liu, L. Li, Y. Yang, Y. Yin. et al.(2014). One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale.6(9):4513-4516. DOI: 10.1007/978-4-431-56556-7.
[10] Y. Liu, S. Pedireddy, Y. H. Lee, R. S. Hegde. et al.(2014). Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Small.10(23):4940-4950. DOI: 10.1007/978-4-431-56556-7.
[11] A. L. González, C. Noguez, J. Beránek, A. S. Barnard. et al.(2014). Size, shape, stability, and color of plasmonic silver nanoparticles. Journal of Physical Chemistry C.118(17):9128-9136. DOI: 10.1007/978-4-431-56556-7.
[12] R. Zong, X. Wang, S. Shi, Y. Zhu. et al.(2014). Kinetically controlled seed-mediated growth of narrow dispersed silver nanoparticles up to 120 nm: secondary nucleation, size focusing, and Ostwald ripening. Physical Chemistry Chemical Physics.16(9):4236-4241. DOI: 10.1007/978-4-431-56556-7.
[13] Y. Xia, K. D. Gilroy, H. C. Peng, X. Xia. et al.(2017). Seed-mediated growth of colloidal metal nanocrystals. Angewandte Chemie International Edition.56(1):60-95. DOI: 10.1007/978-4-431-56556-7.
[14] S. Zeng, D. Baillargeat, H. P. Ho, K. T. Yong. et al.(2014). Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews.43(10):3426-3452. DOI: 10.1007/978-4-431-56556-7.
[15] L. Guo, J. A. Jackman, H. H. Yang, P. Chen. et al.(2015). Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today.10(2):213-239. DOI: 10.1007/978-4-431-56556-7.
[16] C. F. Bohren, D. R. Huffman. (1998). Absorption and Scattering of Light by Small Particles. DOI: 10.1007/978-4-431-56556-7.
[17] X. Zhou, G. Liu, J. Yu, W. Fan. et al.(2012). Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. Journal of Materials Chemistry.22(40):21337-21354. DOI: 10.1007/978-4-431-56556-7.
[18] A. Trügler. (2016). Optical Properties of Metallic Nanoparticles. DOI: 10.1007/978-4-431-56556-7.
[19] B. Nikoobakht, M. A. El-Sayed. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials.15(10):1957-1962. DOI: 10.1007/978-4-431-56556-7.
[20] G. C. Messina, M. G. Sinatra, V. Bonanni, R. Brescia. et al.(2016). Tuning the composition of alloy nanoparticles through laser mixing: the role of surface plasmon resonance. Journal of Physical Chemistry C.120(23):12810-12818. DOI: 10.1007/978-4-431-56556-7.
[21] X. Y. Zhang, A. Hu, T. Zhang, W. Lei. et al.(2011). Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano.5(11):9082-9092. DOI: 10.1007/978-4-431-56556-7.
[22] F. F. Tao. (2014). Metal Nanoparticles for Catalysis: Advances and Applications. DOI: 10.1007/978-4-431-56556-7.
[23] I. Pastoriza-Santos, L. M. Liz-Marzán. (2008). Colloidal silver nanoplates. State of the art and future challenges. Journal of Materials Chemistry.18(15):1724-1737. DOI: 10.1007/978-4-431-56556-7.
[24] A. J. Haes, R. P. Van Duyne. (2002). A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society.124(35):10596-10604. DOI: 10.1007/978-4-431-56556-7.
[25] R. Fiorenza, M. Bellardita, L. D’Urso, G. Compagnini. et al.(2016). Au/TiO-CeO catalysts for photocatalytic water splitting and VOCs oxidation reactions. Catalysts.6(8):121. DOI: 10.1007/978-4-431-56556-7.
[26] J. Yin, Y. Zang, C. Yue, Z. Wu. et al.(2012). Ag nanoparticle/ZnO hollow nanosphere arrays: large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement. Journal of Materials Chemistry.22(16):7902-7909. DOI: 10.1007/978-4-431-56556-7.
[27] M. Xiao, R. Jiang, F. Wang, C. Fang. et al.(2013). Plasmon-enhanced chemical reactions. Journal of Materials Chemistry A.1(19):5790-5805. DOI: 10.1007/978-4-431-56556-7.
[28] P. B. Johnson, R. W. Christy. (1972). Optical constants of the noble metals. Physical Review B.6(12):4370-4379. DOI: 10.1007/978-4-431-56556-7.
[29] E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey. et al.(2013). Local refractive index sensing based on edge gold-coated silver nanoprisms. Journal of Physical Chemistry C.117(44):23148-23154. DOI: 10.1007/978-4-431-56556-7.
[30] O. Saison-Francioso, G. Lévêque, R. Boukherroub, S. Szunerits. et al.(2015). Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study. Journal of Physical Chemistry C.119(51):28551-28559. DOI: 10.1007/978-4-431-56556-7.
文献评价指标
浏览 15次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次