首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2019 ,2019-01-17
Synthesis of Fluorescent Copper Nanoparticles and Ultrasensitive Free Label Detection of Ag+
Research Article
Ning Wang 1 Lu Ga 2 Meilin Jia 1 Jun Ai 1
Show affiliations
DOI:10.1155/2019/4089731
Received 2018-08-14, accepted for publication 2018-10-29, Published 2018-10-29
PDF
摘要

In recent years, the application of fluorescent copper nanomaterials in environmental detection has attracted much attention. This paper mainly introduces the synthesis of copper nanomaterials and the detection of Ag+. A simple method for the determination of Ag+ in water was established by using fluorescent copper nanoparticles synthesized by using glucose (Glc) as a reducing agent as a fluorescent probe. The experimental mechanism of this experiment is that silver ions can rapidly and effectively quench the fluorescence of Glc-CuNPs. A good linear relationship was observed in the range of Ag+ at 100 mol/L–600 mol/L (R=0.9845); the color is gradually enhanced under visible light and visual colorimetric detection. Moreover, the Glc-CuNP sensor selectively selected Ag+, which was not affected by other metal ions, indicating that Glc-CuNPs had good selectivity for the detection of Ag+. Based on this, Glc-CuNP completes the detection of heavy metal silver ions and has a good application prospect in environmental detection.

授权许可

Copyright © 2019 Ning Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jun Ai.College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China, imnu.edu.cn.imacaj01@163.com

推荐引用方式

Ning Wang,Lu Ga,Meilin Jia,Jun Ai. Synthesis of Fluorescent Copper Nanoparticles and Ultrasensitive Free Label Detection of Ag+. Journal of Nanomaterials ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] W. J. Zhang, S. G. Liu, L. Han, Y. Ling. et al.(2018). Copper nanoclusters with strong fluorescence emission as a sensing platform for sensitive and selective detection of picric acid. Analytical Methods.10(35):4251-4256. DOI: 10.1039/C5RA11124B.
[2] L. J. Ou, J. K. Huang, X. L. Lv, N. Huang. et al.(2016). DsDNA-templated fluorescent copper nanoclusters for ultrasensitive label-free detection of Pb ion. Chinese Journal of Analysis Laboratory.8:899-902. DOI: 10.1039/C5RA11124B.
[3] X. Hu, T. Liu, Y. Zhuang, W. Wang. et al.(2016). Recent advances in the analytical applications of copper nanoclusters. TrAC Trends in Analytical Chemistry.77(1):66-75. DOI: 10.1039/C5RA11124B.
[4] X. Yang, Y. Feng, S. Zhu, Y. Luo. et al.(2014). One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution. Analytica Chimica Acta.847:49-54. DOI: 10.1039/C5RA11124B.
[5] J. Lan, P. Zhang, T. T. Wang, Y. Chang. et al.(2014). One-pot hydrothermal synthesis of orange fluorescent silver nanoclusters as a general probe for sulfides. Analyst.139(13):3441-3445. DOI: 10.1039/C5RA11124B.
[6] C. Ding, Y. Tian. (2015). Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosensors & Bioelectronics.65:183-190. DOI: 10.1039/C5RA11124B.
[7] X. Hu, W. Wang, Y. Huang. (2016). Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg in water and food stuff. Talanta.154:409-415. DOI: 10.1039/C5RA11124B.
[8] O. U. Lijuan, J. Luo, A. Sun, S. Chen. et al.(2017). Lable-free fluorescent detection of melamine based on its inhibition on synthesis of copper nanoclusters. Chinese Journal of Analytical Chemistry.45(8):1233-1237. DOI: 10.1039/C5RA11124B.
[9] N. K. Das, S. Ghosh, A. Priya, S. Datta. et al.(2015). Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. Journal of Physical Chemistry C.119(43):24657-24664. DOI: 10.1039/C5RA11124B.
[10] X. Hu, X. Mao, X. Zhang, Y. Huang. et al.(2017). One-step synthesis of orange fluorescent copper nanoclusters for sensitive and selective sensing of Al ions in food samples. Sensors and Actuators B: Chemical.247:312-318. DOI: 10.1039/C5RA11124B.
[11] W. Ding, S. Huang, L. Guan, X. Liu. et al.(2015). Furthering the chemosensing of silver nanoclusters for ion detection. RSC Advances.5(79):64138-64145. DOI: 10.1039/C5RA11124B.
[12] C. Shen, X. Xia, S. Hu, M. Yang. et al.(2014). Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Analytical Chemistry.87(1):693-698. DOI: 10.1039/C5RA11124B.
[13] H. Miao, D. Zhong, Z. Zhou, X. Yang. et al.(2015). Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with HO. Nanoscale.7(45):19066-19072. DOI: 10.1039/C5RA11124B.
[14] B.-Y. Han, X.-F. Hou, R.-C. Xiang, Y. Ming-Bo. et al.(2017). Detection of lead ion based on aggregation-induced emission of copper nanoclusters. Chinese Journal of Analytical Chemistry.45(1):23-27. DOI: 10.1039/C5RA11124B.
[15] Y. Zhou, H. Wang, H. Zhang, Y. Chai. et al.(2018). Programmable modulation of copper nanoclusters electrochemiluminescence via DNA nanocranes for ultrasensitive detection of microRNA. Analytical Chemistry.90(5):3543-3549. DOI: 10.1039/C5RA11124B.
[16] H. Huang, H. Li, J. J. Feng, H. Feng. et al.(2017). One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe, sensing. Sensors and Actuators B: Chemical.241:292-297. DOI: 10.1039/C5RA11124B.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次