首页 » 文章 » 文章详细信息
Journal of Function Spaces Volume 2019 ,2019-01-16
Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels
Research Article
Hussain Al-Qassem 1 Leslie Cheng 2 Yibiao Pan 3
Show affiliations
DOI:10.1155/2019/8561402
Received 2018-11-29, accepted for publication 2019-01-01, Published 2019-01-01
PDF
摘要

We prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition imposed in existing literature.

授权许可

Copyright © 2019 Hussain Al-Qassem et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Hussain Al-Qassem.Department of Mathematics and Physics, Qatar University, Doha, Qatar, qu.edu.qa.husseink@qu.edu.qa

推荐引用方式

Hussain Al-Qassem,Leslie Cheng,Yibiao Pan. Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels. Journal of Function Spaces ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. Z. Lu, Y. Zhang. (1992). Criterion on Lp-boundedness for a class of oscillatory singular integrals with rough kernels. Revista Matemática Iberoamericana.8(2):201-219. DOI: 10.1007/BF02392592.
[2] D. H. Phong, E. M. Stein. (1986). Hilbert integrals, singular integrals, and Radon transforms. I. Acta Mathematica.157(1-2):99-157. DOI: 10.1007/BF02392592.
[3] M. Folch-Gabayet, J. Wright. (2012). Weak-type (1,1) bounds for oscillatory singular integrals with rational phases. Studia Mathematica.210(1):57-76. DOI: 10.1007/BF02392592.
[4] F. Ricci, E. M. Stein. (1987). Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. Journal of Functional Analysis.73(1):179-194. DOI: 10.1007/BF02392592.
[5] S. Sato. (2000). Weighted weak type (1,1) estimates for oscillatory singular integrals. Studia Mathematica.141(1):1-24. DOI: 10.1007/BF02392592.
[6] L. Tang, D. Yang. (2003). Oscillatory singular integrals with variable rough kernel, II. Analysis in Theory and Applications.19(1):1-13. DOI: 10.1007/BF02392592.
[7] C. Fefferman. (1970). Inequalities for strongly singular convolution operators. Acta Mathematica.124:9-36. DOI: 10.1007/BF02392592.
[8] S. Chanillo, M. Christ. (1987). Weak (1,1) bounds for oscillatory singular integrals. Duke Mathematical Journal.55(1):141-155. DOI: 10.1007/BF02392592.
[9] Y. Pan. (1994). Weak (1,1) estimates for oscillatory singular integrals with real-analytic phases. Proceedings of the American Mathematical Society.120(3):789-802. DOI: 10.1007/BF02392592.
[10] H. Al-Qassem, L. Cheng, Y. Pan. (2019). Oscillatory singular integral operators with Hölder class kernels. Journal of Fourier Analysis and Applications:1-9. DOI: 10.1007/BF02392592.
[11] D. Fan, S. Sato. (2001). Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels. The Tohoku Mathematical Journal.53(2):265-284. DOI: 10.1007/BF02392592.
文献评价指标
浏览 11次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次