首页 » 文章 » 文章详细信息
Journal of Electrical and Computer Engineering Volume 2019 ,2019-01-17
CHIP: Clustering Hotspots in Layout Using Integer Programming
Research Article
Rohit Reddy Takkala 1 Chris Chu 1
Show affiliations
DOI:10.1155/2019/9430593
Received 2018-07-24, accepted for publication 2018-11-27, Published 2018-11-27
PDF
摘要

Clustering algorithms have been explored in recent years to solve hotspot clustering problems in integrated circuit design. With various applications in design for manufacturability flow such as hotspot library generation, systematic yield optimization, and design space exploration, generating good quality clusters along with their representative clips is of utmost importance. With several generic clustering algorithms at our disposal, hotspots can be clustered based on the distance metric defined while satisfying some tolerance conditions. However, the clusters generated from generic clustering algorithms need not achieve optimal results. In this paper, we introduce two optimal integer linear programming formulations based on triangle inequality to solve the problem of minimizing cluster count while satisfying given constraints. Apart from minimizing cluster count, we generate representative clips that best represent the clusters formed. We achieve a better cluster count for both formulations in most test cases as compared to the results published in the literature in the ICCAD 2016 contest benchmarks as well as the reference results reported in the ICCAD 2016 contest website.

授权许可

Copyright © 2019 Rohit Reddy Takkala and Chris Chu. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Rohit Reddy Takkala.Dept. of Electrical and Computer Engineering, Iowa State University, Ames 50011, USA, iastate.edu.rohitreddytakkala@gmail.com

推荐引用方式

Rohit Reddy Takkala,Chris Chu. CHIP: Clustering Hotspots in Layout Using Integer Programming. Journal of Electrical and Computer Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] IBM CPLEX. Ibm Ilog Cplex Optimizer. DOI: 10.1109/tcad.2014.2387858.
[2] P. H. Wu, C. W. Chen, C. R. Wu, T. Y. Ho. et al.Triangle-based process hotspot classification with dummification in euvl. :1-4. DOI: 10.1109/tcad.2014.2387858.
[3] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang. et al.Accurate process-hotspot detection using critical design rule extraction. :1167-1172. DOI: 10.1109/tcad.2014.2387858.
[4] W. C. J. Tam, R. D. Blanton. (2015). LASIC: layout analysis for systematic ic-defect identification using clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.34(8):1278-1290. DOI: 10.1109/tcad.2014.2387858.
[5] R. O. Topaloglu. ICCAD-2016 CAD contest in pattern classification for integrated circuit design space analysis and benchmark suite. :41:1-41:4. DOI: 10.1109/tcad.2014.2387858.
[6] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, C. Chiang. et al.(2015). Machine-learning-based hotspot detection using topological classification and critical feature extraction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.34(3):460-470. DOI: 10.1109/tcad.2014.2387858.
[7] J. W. Park, R. Todd, X. Song. (2016). Geometric pattern match using edge driven dissected rectangles and vector space. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.35(12):2046-2055. DOI: 10.1109/tcad.2014.2387858.
[8] J.-Y. Wuu, F. G. Pikus, A. Torres, M. Marek-Sadowska. et al.Rapid layout pattern classification. :781-786. DOI: 10.1109/tcad.2014.2387858.
[9] M. Woo, S. Kim, S. Kang. GRASP based metaheuristics for layout pattern classification. :512-518. DOI: 10.1109/tcad.2014.2387858.
[10] R. R. Takkala. (2018). CHIP: clustering hotspots in layout using integer programming. Creative Components.33. DOI: 10.1109/tcad.2014.2387858.
[11] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, C. Chiang. et al.Machine-learning-based hotspot detection using topological classification and critical feature extraction. :67:1-67:6. DOI: 10.1109/tcad.2014.2387858.
[12] F. Yang, S. Sinha, C. C. Chiang, X. Zeng. et al.(2017). Improved tangent space-based distance metric for lithographic hotspot classification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.36(9):1545-1556. DOI: 10.1109/tcad.2014.2387858.
[13] S. V. Dongen. (2000). Graph clustering by flow simulation. . DOI: 10.1109/tcad.2014.2387858.
[14] P. Morey-Chaisemartin, F. Brault. (2015). Is it time to switch to oasis. mask?. Solid State Technology.58(5):33-38. DOI: 10.1109/tcad.2014.2387858.
[15] K.-J. Chen, Y.-K. Chuang, B.-Y. Yu, S.-Y. Fang. et al.Minimizing cluster number with clip shifting in hotspot pattern classification. :63:1-63:6. DOI: 10.1109/tcad.2014.2387858.
[16] D. Ding, X. Wu, J. Ghosh, D. Z. Pan. et al.Machine learning based lithographic hotspot detection with critical-feature extraction and classification. :219-222. DOI: 10.1109/tcad.2014.2387858.
[17] W.-C. Chang, I. H.-R. Jiang, Y.-T. Yu, W.-F. Liu. et al.iClaire: a fast and general layout pattern classification algorithm. :64:1-64:6. DOI: 10.1109/tcad.2014.2387858.
[18] N. Ma. (2009). Automatic IC hotspot classification and detection using pattern-based clustering. . DOI: 10.1109/tcad.2014.2387858.
文献评价指标
浏览 30次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次