首页 » 文章 » 文章详细信息
Journal of Chemistry Volume 2019 ,2019-01-15
Photochemical Surface Modification of Titanium Dioxide Nanotube-Coated Surfaces by Ag-Hydroxyapatite Compositions
Research Article
Khaled Rashwan 1 Jevin Meyerink 2 Grigoriy Sereda 1 Grant Crawford 2
Show affiliations
DOI:10.1155/2019/9325264
Received 2018-09-29, accepted for publication 2018-12-05, Published 2018-12-05
PDF
摘要

Silver-hydroxyapatite coatings prepared from Ag3PO4 microcrystals have been deposited on titanium dioxide nanotubes supported by titanium disks by photodecomposition of predeposited Ag3PO4 microcrystals or their coprecipitate with hydroxyapatite. The SEM-EDS characterization has confirmed excellent film uniformity and consistent deposition over the surface, which is essential for improving osseointegration of tunable antibacterial bone implants.

授权许可

Copyright © 2019 Khaled Rashwan et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Khaled Rashwan.Department of Chemistry, University of South Dakota, Vermillion, South Dakota, USA, sdstate.edu.khaled.mahran@coyotes.usd.edu

推荐引用方式

Khaled Rashwan,Jevin Meyerink,Grigoriy Sereda,Grant Crawford. Photochemical Surface Modification of Titanium Dioxide Nanotube-Coated Surfaces by Ag-Hydroxyapatite Compositions. Journal of Chemistry ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Xie, Y. Meng. (2014). SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array. RSC Advances.4(79):41734-41743. DOI: 10.1016/j.pmatsci.2008.06.004.
[2] S. Mei, H. Wang, W. Wang. (2014). Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials.35(14):4255-4265. DOI: 10.1016/j.pmatsci.2008.06.004.
[3] A. Agarwal, T. L. Weis, M. J. Schurr. (2010). Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials.31(4):680-690. DOI: 10.1016/j.pmatsci.2008.06.004.
[4] S. Svensson, F. Suska, L. Emanuelsson. (2013). Osseointegration of titanium with an antimicrobial nanostructured noble metal coating. Nanomedicine: Nanotechnology, Biology and Medicine.9(7):1048-1056. DOI: 10.1016/j.pmatsci.2008.06.004.
[5] L. Zhao, H. Wang, K. Huo. (2011). Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials.32(24):5706-5716. DOI: 10.1016/j.pmatsci.2008.06.004.
[6] P. DeVasConCellos, S. Bose, H. Beyenal, A. Bandyopadhyay. et al.(2012). Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Materials Science and Engineering: C.32(5):1112-1120. DOI: 10.1016/j.pmatsci.2008.06.004.
[7] N. J. Shah, M. N. Hyder, J. S. Moskowitz. (2013). Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Science Translational Medicine.5(191):191. DOI: 10.1016/j.pmatsci.2008.06.004.
[8] G. Mendonça, D. B. S. Mendonça, F. J. L. Aragão, L. F. Cooper. et al.(2008). Advancing dental implant surface technology-from micron to nanotopography. Biomaterials.29(28):3822-3835. DOI: 10.1016/j.pmatsci.2008.06.004.
[9] A. Gao, R. Hang, X. Huang. (2014). The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials.35(13):4223-4235. DOI: 10.1016/j.pmatsci.2008.06.004.
[10] T. J. Webster, J. U. Ejiofor. (2004). Increased osteoblast adhesion on nanophase metals: Ti, TiAlV, and CoCrMo. Biomaterials.25(19):4731-4739. DOI: 10.1016/j.pmatsci.2008.06.004.
[11] G. Crawford, N. Chawla. (2009). Porous hierarchical TiO2 nanostructures: processing and microstructure relationships. Acta Materialia.57(3):854-867. DOI: 10.1016/j.pmatsci.2008.06.004.
[12] Z. Guo, C. Chen, Q. Gao, Y. Li. et al.(2014). Fabrication of silver-incorporated TiO nanotubes and evaluation on its antibacterial activity. Materials Letters.137:464-467. DOI: 10.1016/j.pmatsci.2008.06.004.
[13] A. Dubnika, D. Loca, V. Rudovica, M. B. Parekh. et al.(2017). Functionalized silver doped hydroxyapatite scaffolds for controlled simultaneous silver ion and drug delivery. Ceramics International.43(4):3698-3705. DOI: 10.1016/j.pmatsci.2008.06.004.
[14] M. Ribeiro, F. J. Monteiro, M. P. Ferraz. (2014). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter.2(4):176-194. DOI: 10.1016/j.pmatsci.2008.06.004.
[15] V. Uskoković, S. S. Batarni, J. Schweicher, A. King. et al.(2013). Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro. ACS Applied Materials and Interfaces.5(7):2422-2431. DOI: 10.1016/j.pmatsci.2008.06.004.
[16] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq. et al.(2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials.23(7):844-854. DOI: 10.1016/j.pmatsci.2008.06.004.
[17] K. G. Neoh, X. Hu, D. Zheng, E. T. Kang. et al.(2012). Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials.33(10):2813-2822. DOI: 10.1016/j.pmatsci.2008.06.004.
[18] C. S. Hajicharalambous, J. Lichter, W. T. Hix, M. Swierczewska. et al.(2009). Nano- and sub-micron porous polyelectrolyte multilayer assemblies: biomimetic surfaces for human corneal epithelial cells. Biomaterials.30(23-24):4029-4036. DOI: 10.1016/j.pmatsci.2008.06.004.
[19] K. Das, S. Bose, A. Bandyopadhyay. (2009). TiO2nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research Part A.90(1):225-237. DOI: 10.1016/j.pmatsci.2008.06.004.
[20] L. Zhao, S. Mei, W. Wang, P. K. Chu. et al.(2010). The role of sterilization in the cytocompatibility of titania nanotubes. Biomaterials.31(8):2055-2063. DOI: 10.1016/j.pmatsci.2008.06.004.
[21] F. J. Gil, A. Padrós, J. M. Manero, C. Aparicio. et al.(2002). Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Materials Science and Engineering: C.22(1):53-60. DOI: 10.1016/j.pmatsci.2008.06.004.
[22] S. Oh, C. Daraio, L.-H. Chen, T. R. Pisanic. et al.(2006). Significantly accelerated osteoblast cell growth on aligned TiO nanotubes. Journal of Biomedical Materials Research Part A.78(1):97-103. DOI: 10.1016/j.pmatsci.2008.06.004.
[23] V. Alt. (2017). Antimicrobial coated implants in trauma and orthopaedics—a clinical review and risk-benefit analysis. Injury.48(3):599-607. DOI: 10.1016/j.pmatsci.2008.06.004.
[24] L. Zhao, S. Mei, P. K. Chu, Y. Zhang. et al.(2010). The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials.31(19):5072-5082. DOI: 10.1016/j.pmatsci.2008.06.004.
[25] Y. Huang, Z. Xu, X. Zhang. (2017). Nanotube-formed Ti substrates coated with silicate/silver co-doped hydroxyapatite as prospective materials for bone implants. Journal of Alloys and Compounds.697:182-199. DOI: 10.1016/j.pmatsci.2008.06.004.
[26] M. Niraula, S. Adhikari, D. Y. Lee. (2014). Titania nanotube-silver phosphate hybrid heterostructure for improved visible light induced photocatalysis. Chemical Physics Letters.593:193-197. DOI: 10.1016/j.pmatsci.2008.06.004.
[27] T. Wang, Z. Weng, X. Liu, K. W. K. Yeung. et al.(2017). Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials.2(1):44-50. DOI: 10.1016/j.pmatsci.2008.06.004.
[28] R. Liu, P. Hu, S. Chen. (2012). Photocatalytic activity of AgPO nanoparticle/TiO nanobelt heterostructures. Applied Surface Science.258(24):9805-9809. DOI: 10.1016/j.pmatsci.2008.06.004.
[29] A. Besinis, S. D. Hadi, H. R. Le, C. Tredwin. et al.(2017). Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology.11(3):1-12. DOI: 10.1016/j.pmatsci.2008.06.004.
[30] K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes. et al.(2007). Decreased adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials.28(32):4880-4888. DOI: 10.1016/j.pmatsci.2008.06.004.
[31] E. Anitua, G. Orive, R. Pla, P. Roman. et al.(2009). The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: a histologic and histomorphometric study. Journal of Biomedical Materials Research Part A.91(1):158-165. DOI: 10.1016/j.pmatsci.2008.06.004.
[32] B. S. Necula, L. E. Fratila-Apachitei, S. A. J. Zaat, I. Apachitei. et al.(2009). In vitro antibacterial activity of porous TiO-Ag composite layers against methicillin-resistant. Acta Biomaterialia.5(9):3573-3580. DOI: 10.1016/j.pmatsci.2008.06.004.
[33] K. Rashwan, G. Sereda. (2016). Applications of nanoparticles through surface functionalization. ACS Symposium Series.1224:91-105. DOI: 10.1016/j.pmatsci.2008.06.004.
[34] S. Oh, R. Finones, C. Daraio, L. Chen. et al.(2005). Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials.26(24):4938-4943. DOI: 10.1016/j.pmatsci.2008.06.004.
[35] G. Crawford, N. Chawla, K. Das, S. Bose. et al.(2007). Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate☆. Acta Biomaterialia.3(3):359-367. DOI: 10.1016/j.pmatsci.2008.06.004.
[36] R. Lange, F. Lüthen, U. Beck, J. Rychly. et al.(2002). Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomolecular Engineering.19(2):255-261. DOI: 10.1016/j.pmatsci.2008.06.004.
[37] S. A. Jovanovic, H. Spiekermann, E. J. Richter. (1992). Bone regeneration around titanium dental implants in dehisced defect sites: a clinical study. International Journal of Oral and Maxillofacial Implants.7(2):233-245. DOI: 10.1016/j.pmatsci.2008.06.004.
[38] G. Sereda, K. Rashwan, B. Karels, A. Fritza. et al.(2014). Materials science versus tooth hypersensitivity. Dekker Encyclopedia of Nanoscience and Nanotechnology:1-6. DOI: 10.1016/j.pmatsci.2008.06.004.
[39] P. Ducheyne, W. Van Raemdonck, J. C. Heughebaert, M. Heughebaert. et al.(1986). Structural analysis of hydroxyapatite coatings on titanium. Biomaterials.7(2):97-103. DOI: 10.1016/j.pmatsci.2008.06.004.
[40] S. Imade, R. Mori, Y. Uchio, S. Furuya. et al.(2009). Effect of implant surface roughness on bone fixation: the differences between bone and metal pegs. Journal of Orthopaedic Science.14(5):652-657. DOI: 10.1016/j.pmatsci.2008.06.004.
[41] D. R. Cooley, A. F. Van Dellen, J. O. Burgess, A. S. Windeler. et al.(1992). The advantages of coated titanium implants prepared by radiofrequency sputtering from hydroxyapatite. Journal of Prosthetic Dentistry.67(1):93-100. DOI: 10.1016/j.pmatsci.2008.06.004.
[42] P. J. Govindharajulu, X. Chen, Y. Li, C. J. Rodriguez-Cabello. et al.(2017). Chitosan-recombinamer layer-by-layer coatings for multifunctional implants. International Journal of Molecular Sciences.18(2):369. DOI: 10.1016/j.pmatsci.2008.06.004.
[43] L. Zhao, P. K. Chu, Y. Zhang, Z. Wu. et al.(2009). Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials.91(1):470-480. DOI: 10.1016/j.pmatsci.2008.06.004.
[44] M. C. De Andrade, M. S. Sader, M. R. T. Filgueiras, T. Ogasawara. et al.(2000). Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment. Journal of Materials Science: Materials in Medicine.11(11):751-755. DOI: 10.1016/j.pmatsci.2008.06.004.
[45] C. Caparros, M. Ortiz-Hernandez, M. Molmeneu. (2016). Bioactive macroporous titanium implants highly interconnected. Journal of Materials Science: Materials in Medicine.27(10):151. DOI: 10.1016/j.pmatsci.2008.06.004.
[46] J. Hardes, H. Ahrens, C. Gebert. (2007). Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials.28(18):2869-2875. DOI: 10.1016/j.pmatsci.2008.06.004.
[47] V. Alt, T. Bechert, P. Steinrücke. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials.25(18):4383-4391. DOI: 10.1016/j.pmatsci.2008.06.004.
[48] H.-S. Kim, Y.-J. Kim, J.-H. Jang, J.-W. Park. et al.(2016). Surface engineering of nanostructured titanium implants with bioactive ions. Journal of Dental Research.95(5):558-565. DOI: 10.1016/j.pmatsci.2008.06.004.
[49] S. B. Goodman, Z. Yao, M. Keeney, F. Yang. et al.(2013). The future of biologic coatings for orthopaedic implants. Biomaterials.34(13):3174-3183. DOI: 10.1016/j.pmatsci.2008.06.004.
[50] C. Castellani, R. A. Lindtner, P. Hausbrandt. (2011). Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomaterialia.7(1):432-440. DOI: 10.1016/j.pmatsci.2008.06.004.
[51] I. Sondi, B. Salopek-Sondi. (2004). Silver nanoparticles as antimicrobial agent: a case study on as aBmodel for Gram-negative bacteria. Journal of Colloid and Interface Science.275(1):177-182. DOI: 10.1016/j.pmatsci.2008.06.004.
[52] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia. et al.(2009). Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Progress in Materials Science.54(3):397-425. DOI: 10.1016/j.pmatsci.2008.06.004.
[53] K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten. et al.(2009). Improved bone-forming functionality on diameter-controlled TiO nanotube surface. Acta Biomaterialia.5(8):3215-3223. DOI: 10.1016/j.pmatsci.2008.06.004.
[54] D. A. Puleo, L. A. Holleran, R. H. Doremus, R. Bizios. et al.(1991). Osteoblast responses to orthopedic implant materialsin vitro. Journal of Biomedical Materials Research.25(6):711-723. DOI: 10.1016/j.pmatsci.2008.06.004.
[55] O. Salata. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology.2:3. DOI: 10.1016/j.pmatsci.2008.06.004.
[56] L. Gaviria, J. P. Salcido, T. Guda, J. L. Ong. et al.(2014). Current trends in dental implants. Journal of Korean Association of Oral and Maxillofacial Surgeons.40(2):50-60. DOI: 10.1016/j.pmatsci.2008.06.004.
[57] A. Satsangi, N. Satsangi, R. Glover, R. K. Satsangi. et al.(2003). Osteoblast response to phospholipid modified titanium surface. Biomaterials.24(25):4585-4589. DOI: 10.1016/j.pmatsci.2008.06.004.
[58] B. L. Foss, N. Ghimire, R. Tang, Y. Sun. et al.(2015). Bacteria and osteoblast adhesion to chitosan immobilized titanium surface: a race for the surface. Colloids and Surfaces B: Biointerfaces.134:370-376. DOI: 10.1016/j.pmatsci.2008.06.004.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次