首页 » 文章 » 文章详细信息
Journal of Chemistry Volume 2019 ,2019-01-16
Study of the Catalytic Activity and Surface Properties of Manganese-Zinc Ferrite Prepared from Used Batteries
Research Article
Katarzyna Winiarska 1 Roman Klimkiewicz 2 Włodzimierz Tylus 3 Agnieszka Sobianowska-Turek 4 Juliusz Winiarski 3 Bogdan Szczygieł 3 Irena Szczygieł 1
Show affiliations
DOI:10.1155/2019/5430904
Received 2018-09-21, accepted for publication 2018-12-14, Published 2018-12-14
PDF
摘要

The catalytic activity of the Mn-Zn ferrites obtained by chemical methods from a solution after acid leaching of waste Zn-C and Zn-Mn batteries was studied. Precursors of metal ions (Fe, Mn, and Zn) were obtained using different precipitating agents ((NH4)2C2O4, Na2CO3, and NaOH), and then, the combustion route was used to prepare catalytically active nanocrystalline ferrites. The obtained ferrite catalysts differ in terms of microstructure, the number of acid and base sites, and the surface composition depending on the ion precursor used in the combustion process. All prepared materials were catalytically active in the butan-1-ol conversion test. Depending on the ion precursor applied in the combustion process, a selective catalyst towards aldehyde (carbonate precursor) or ketone (hydroxide precursor) formation can be obtained. Furthermore, the catalyst prepared from the hydroxide precursor exhibits the highest catalytic activity in the n-butanol test (nearly 100% conversion under the experiment conditions).

授权许可

Copyright © 2019 Katarzyna Winiarska et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Katarzyna Winiarska.Department of Inorganic Chemistry, Faculty of Engineering and Economics, Wrocław University of Economics, Komandorska 118/120, PL53345 Wrocław, Poland, ue.wroc.pl.katarzyna.winiarska@ue.wroc.pl

推荐引用方式

Katarzyna Winiarska,Roman Klimkiewicz,Włodzimierz Tylus,Agnieszka Sobianowska-Turek,Juliusz Winiarski,Bogdan Szczygieł,Irena Szczygieł. Study of the Catalytic Activity and Surface Properties of Manganese-Zinc Ferrite Prepared from Used Batteries. Journal of Chemistry ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. K. Phung, A. A. Casazza, B. Aliakbarian, E. Finocchio. et al.(2013). Catalytic conversion of ethyl acetate and acetic acid on alumina as models of vegetable oils conversion to biofuels. Chemical Engineering Journal.215-216:838-848. DOI: 10.1016/j.jpowsour.2004.03.083.
[2] R. Klimkiewicz, H. Grabowska, L. Syper. (2003). Vapor-phase conversion of esters into ketones in the presence of an Sn-, Ce-, and Rh-containing oxide catalyst. Kinetics and Catalysis.44(2):283-286. DOI: 10.1016/j.jpowsour.2004.03.083.
[3] A. Sobianowska-Turek, M. Ulewicz, K. L. Grudniewska. (2016). Ion flotation and solvent sublation of zinc(II) and manganese(II) in the presence of proton-ionizable lariat ethers. Physicochemical Problems of Mineral Processing.52:1048-1060. DOI: 10.1016/j.jpowsour.2004.03.083.
[4] J. Wrzyszcz, H. Grabowska, R. Klimkiewicz, L. Syper. et al.(1998). Reactions of normal alcohols in the presence of a dehydrogenationing iron catalyst. Catalysis Letters.54(1-2):55-58. DOI: 10.1016/j.jpowsour.2004.03.083.
[5] K. Winiarska, R. Klimkiewicz, J. Winiarski, I. Szczygieł. et al.(2016). MnZnFeO ferrites prepared by the modified combustion method as the catalyst for butan-1-ol dehydrogenation. Reaction Kinetics, Mechanisms and Catalysis.120(1):261-278. DOI: 10.1016/j.jpowsour.2004.03.083.
[6] H. Waqas, A. H. Qureshi. (2009). Low temperature sintering study of nanosized Mn-Zn ferrites synthesized by sol-gel auto combustion process. Journal of Thermal Analysis and Calorimetry.100(2):529-535. DOI: 10.1016/j.jpowsour.2004.03.083.
[7] L. Xiai, T. Zhou, J. Meng. (2009). Hydrtothermal synthesis of Mn-Zn ferrites from spent alkaline Zn-Mn batteries. Particulogy.7(6):491-495. DOI: 10.1016/j.jpowsour.2004.03.083.
[8] A. Angermann, J. Töpfer, K. L. da Silva, K. D. Becker. et al.(2010). Nanocrystalline Mn-Zn ferrites from mixed oxalates: synthesis, stability and magnetic properties. Journal of Alloys and Compounds.508(2):433-439. DOI: 10.1016/j.jpowsour.2004.03.083.
[9] S. Sugunan, D. John, N. K. Renuka, M. Varghese. et al.(1999). Electron donor properties and catalytic activity of manganese ferrospinels. Reaction Kinetics and Catalysis Letters.66(1):39-45. DOI: 10.1016/j.jpowsour.2004.03.083.
[10] P. Liu, H. He, G. Wei. (2016). Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: catalyst characterization, performance and reaction mechanism. Applied Catalysis B: Environmental.182:476-484. DOI: 10.1016/j.jpowsour.2004.03.083.
[11] F.-Y. Qiu, L.-T. Weng, E. Sham, P. Ruiz. et al.(1989). Effect of added SbO, BiPO or SnO on the catalytic properties of ZnFeO in the oxidative dehydrogenation of butene to butadiene. Applied Catalysis.51(1):235-253. DOI: 10.1016/j.jpowsour.2004.03.083.
[12] P. Hu, D. a. Pan, S. Zhang, J. Tian. et al.(2011). Mn-Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn-Mn batteries. Journal of Alloys and Compounds.509(9):3991-3994. DOI: 10.1016/j.jpowsour.2004.03.083.
[13] J. Li, Y. Wu, Y. Pan, W. Liu. et al.(2008). Agglomeration of alpha-AlO powders prepared by gel combustion. Ceramics International.34(6):1539-1542. DOI: 10.1016/j.jpowsour.2004.03.083.
[14] X. Y. Hou, J. Feng, X. H. Xiaohan Liu. (2010). Magnetic and high rate adsorption properties of porous MnZnFeO (0 ≤ x ≤ 0.8) adsorbents. Journal of Colloid and Interface Science.353:524-529. DOI: 10.1016/j.jpowsour.2004.03.083.
[15] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan. et al.(2006). Mn-Zn ferrite nanoparticles for ferrofluid preparation: study on thermal-magnetic properties. Journal of Magnetism and Magnetic Materials.298(2):83-94. DOI: 10.1016/j.jpowsour.2004.03.083.
[16] M. V. Bukhtiyarova, A. S. Ivanova, E. M. Slavinskaya, L. M. Plyasova. et al.(2010). Catalytic combustion of methane on ferrites. Studies in Surface Science and Catalysis.175:355-359. DOI: 10.1016/j.jpowsour.2004.03.083.
[17] I. Szczygieł, K. Winiarska, A. Sobianowska-Turek. (2018). The study of thermal, microstructural and magnetic properties of manganese–zinc ferrite prepared by co-precipitation method using different precipitants. Journal of Thermal Analysis and Calorimetry.134(1):51-57. DOI: 10.1016/j.jpowsour.2004.03.083.
[18] K. S. W. Sing, D. H. Everett, R. A. W. Haul. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry.57(4):603-619. DOI: 10.1016/j.jpowsour.2004.03.083.
[19] K. Laohhasurayotin, S. Pookboonmee, D. Viboonratanasri, W. Kangwansupamonkon. et al.(2012). Preparation of magnetic photocatalyst nanoparticles-TiO/SiO/Mn-Zn ferrite-and its photocatalytic activity influenced by silica interlayer. Materials Research Bulletin.47(6):1500-1507. DOI: 10.1016/j.jpowsour.2004.03.083.
[20] A. Sobianowska-Turek, W. Szczepaniak, P. Maciejewski, M. Gawlik-Kobylińska. et al.(2016). Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO and Zn-C waste batteries: hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. Journal of Power Sources.325:220-228. DOI: 10.1016/j.jpowsour.2004.03.083.
[21] D. C. R. Espinosa, A. M. Bernardes, J. A. S. Tenório. (2004). An overview on the current processes for the recycling of batteries. Journal of Power Sources.135(1-2):311-319. DOI: 10.1016/j.jpowsour.2004.03.083.
[22] J. P. Jacobs, A. Maltha, J. G. H. Reintjes, J. Drimal. et al.(1994). The surface of catalytically active spinels. Journal of Catalysis.147(1):294-300. DOI: 10.1016/j.jpowsour.2004.03.083.
[23] S. Fröhlich, D. Sewing. (1955). The BATENUS process for recycling mixed battery waste. Journal of Power Sources.57(1-2):27-30. DOI: 10.1016/j.jpowsour.2004.03.083.
[24] B. Vincent Cris, X. P. S. International. (2005). Handbooks of Monochromatic XPS Spectra.2. DOI: 10.1016/j.jpowsour.2004.03.083.
[25] R. J. Toh, A. Y. S. Eng, Z. Sofer, D. Sedmidubsky. et al.(2015). Ternary transition metal oxide nanoparticles with spinel structure for the oxygen reduction reaction. ChemElectroChem.2(7):982-987. DOI: 10.1016/j.jpowsour.2004.03.083.
[26] A. V. Kadu, S. V. Jagtap, G. N. Chaudhari. (2009). Studies on the preparation and ethanol gas sensing properties of spinel ZnMnFeO nanomaterials. Current Applied Physics.9(6):1246-1251. DOI: 10.1016/j.jpowsour.2004.03.083.
[27] K. Winiarska, I. Szczygieł, R. Klimkiewicz. (2013). Manganese-zinc ferrite synthesis by the sol-gel autocombustion method. Effect of the precursor on the ferrite’s catalytic properties. Industrial and Engineering Chemistry Research.52:353-361. DOI: 10.1016/j.jpowsour.2004.03.083.
[28] C.-S. Hwang, N.-C. Wang. (2004). Preparation and characterization of ferrite catalysts for reduction of CO. Materials Chemistry and Physics.88(2-3):258-263. DOI: 10.1016/j.jpowsour.2004.03.083.
[29] M. A. Gabal, R. S. Al-luhaibi, Y. M. Al Angari. (2014). Recycling spent zinc-carbon batteries through synthesizing nano-crystalline Mn-Zn ferrites. Powder Technology.258:32-37. DOI: 10.1016/j.jpowsour.2004.03.083.
[30] T.-H. Kim, G. Senanayake, J.-G. Kang. (2009). Reductive acid leaching of spent zinc-carbon batteries and oxidative precipitation of Mn-Zn ferrite nanoparticles. Hydrometallurgy.96(1-2):154-158. DOI: 10.1016/j.jpowsour.2004.03.083.
[31] I. De Michelis, F. Ferella, E. Karakaya, F. Beolchini. et al.(2007). Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Journal of Power Sources.172(2):975-983. DOI: 10.1016/j.jpowsour.2004.03.083.
[32] A. Sobianowska-Turek, W. Szczepaniak, M. Zabłocka-Malicka. (2014). Electrochemical evaluation of manganese reducers—recovery of Mn from Zn-Mn and Zn-C battery waste. Journal of Power Sources.270:668-674. DOI: 10.1016/j.jpowsour.2004.03.083.
[33] T.-H. Kim, J.-G. Kang, J.-S. Sohn. (2008). Preparation of Mn-Zn ferrite from spent zinc-carbon batteries by alkali leaching, acid leaching and co-precipitation. Metals and Materials International.14(5):655-658. DOI: 10.1016/j.jpowsour.2004.03.083.
[34] S. M. Shin, G. Senanayake, J.-s. Sohn, J.-g. Kang. et al.(2009). Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide. Hydrometallurgy.96(4):349-353. DOI: 10.1016/j.jpowsour.2004.03.083.
[35] Y. Ren, L. Lin, J. Ma, J. Yang. et al.(2015). Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFeO (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Applied Catalysis B: Environmental.165:572-578. DOI: 10.1016/j.jpowsour.2004.03.083.
[36] O. J. Wimmers, P. Arnoldy, J. A. Moulijn. (1986). Determination of the reduction mechanism by temperature-programmed reduction: application to small FeO particles. Journal of Physical Chemistry.90(7):1331-1337. DOI: 10.1016/j.jpowsour.2004.03.083.
[37] C. G. Ramankutty, S. Sugunan, B. Thomas. (2002). Study of cyclohexanol decomposition reaction over the ferrospinels, ACuFeO (A = Ni or Co and x = 0, 0.3, 0.5, 0.7 and 1), prepared by ‘soft’ chemical methods. Journal of Molecular Catalysis A: Chemical.187(1):105-117. DOI: 10.1016/j.jpowsour.2004.03.083.
[38] A. Khan, P. Chen, P. Boolchand, P. Smirniotis. et al.(2008). Modified nano-crystalline ferrites for high-temperature WGS membrane reactor applications. Journal of Catalysis.253(1):91-104. DOI: 10.1016/j.jpowsour.2004.03.083.
[39] I. Sharifi, H. Shokrollahi, S. Amiri. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials.324(6):902-915. DOI: 10.1016/j.jpowsour.2004.03.083.
[40] X. Le Guével, E. M. Prinz, R. Müller. (2012). Synthesis and characterization of superparamagnetic nanoparticles coated with fluorescent gold nanoclusters. Journal of Nanoparticle Research.14(2):727-737. DOI: 10.1016/j.jpowsour.2004.03.083.
[41] S. A. Shah, A. Majeed, K. Rashid, S.-U. Awan. et al.(2013). PEG-coated folic acid-modified superparamagnetic MnFeO nanoparticles for hyperthermia therapy and drug delivery. Materials Chemistry and Physics.138(2-3):703-708. DOI: 10.1016/j.jpowsour.2004.03.083.
[42] G. Senanayake, S.-M. Shin, A. Senaputra. (2010). Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions. Hydrometallurgy.105(1-2):36-41. DOI: 10.1016/j.jpowsour.2004.03.083.
[43] P. Chang-hong, B. Ben-shuai, C. Yi-feng. (2008). Study on the preparation of Mn-Zn soft magnetic ferrite powders from waste Zn-Mn dry batteries. Waste Management.28(2):326-332. DOI: 10.1016/j.jpowsour.2004.03.083.
[44] A. Ito, M. Shinkai, H. Honda, T. Kobayashi. et al.(2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering.100(1):1-11. DOI: 10.1016/j.jpowsour.2004.03.083.
[45] F. Ferella, I. De Michelis, F. Vegliò. (2008). Process for the recycling of alkaline and zinc-carbon spent batteries. Journal of Power Sources.183(2):805-811. DOI: 10.1016/j.jpowsour.2004.03.083.
[46] C.-W. Liu, C.-H. Lin, Y.-P. Fu. (2007). Characterization of Mn-Zn ferrite prepared by a hydrothermal process from used dry batteries and waste steel pickling liquor. Journal of the American Ceramic Society.90(10):3349-3352. DOI: 10.1016/j.jpowsour.2004.03.083.
[47] C. C. B. M. de Souza, J. A. S. Tenório. (2004). Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing. Journal of Power Sources.136(1):191-196. DOI: 10.1016/j.jpowsour.2004.03.083.
[48] G. Xi, L. Yang, M. Lu. (2006). Study on preparation of nanocrystalline ferrites using spent alkaline Zn-Mn batteries. Materials Letters.60(29-30):3582-3585. DOI: 10.1016/j.jpowsour.2004.03.083.
[49] L. F. Zhang, Y. X. Wu. (2013). Sol-gel synthesized magnetic spinel ferrite nanoparticles as novel catalyst for oxidative degradation of methyl orange. Journal of Nanomaterials.2013. DOI: 10.1016/j.jpowsour.2004.03.083.
[50] J. Nan, D. Han, M. Cui, M. Yang. et al.(2006). Recycling spent zinc manganese dioxide batteries through synthesizing Zn-Mn ferrite magnetic materials. Journal of Hazardous Materials.133(1–3):257-261. DOI: 10.1016/j.jpowsour.2004.03.083.
文献评价指标
浏览 24次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次