首页 » 文章 » 文章详细信息
Journal of Chemistry Volume 2019 ,2019-01-16
Deeper Insights into Conformational Analysis of cis-Butene and 1-Alkenes as Monomers and Dimers: QTAIM, NCI, and DFT Approach
Research Article
Caio L. Firme 1
Show affiliations
DOI:10.1155/2019/2365915
Received 2018-09-06, accepted for publication 2018-12-19, Published 2018-12-19
PDF
摘要

A few theoretical and experimental studies have been done so far about the properties and the conformational analysis of alkenes as monomers and dimers. Deeper insights into the conformational analysis of monomers and dimers of alkenes and the relation with boiling point are done in this work. In low-lying cis-butene, there is no repulsive interaction between methyl groups but there is an attractive hydrogen-hydrogen bonding. In monomers of 1-alkenes, the most stable conformer has bent-inward geometry which favors the π bond interaction with methyl/methylene hydrogen/carbon atoms. Conversely, each alkene’s molecule in the corresponding most stable alkene’s dimer has a straight, zig-zag geometry. Two straight, zig-zag alkene’s molecules in the corresponding most stable dimer have only one type of intermolecular interaction (hydrogen-hydrogen bonding). As a consequence, very good linear relationships between a physical property (such as boiling point) and theoretical parameters are obtained.

授权许可

Copyright © 2019 Caio L. Firme. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Caio L. Firme.Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Lagoa Nova, CEP 59078-970 Natal, Rio Grande do Norte, Brazil, ufrn.br.firme.caio@gmail.com

推荐引用方式

Caio L. Firme. Deeper Insights into Conformational Analysis of cis-Butene and 1-Alkenes as Monomers and Dimers: QTAIM, NCI, and DFT Approach. Journal of Chemistry ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. D. Chai, M. Head-Gordon. (2008). Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Physical Chemistry Chemical Physics.10(44):6615-6620. DOI: 10.1016/s1093-3263(01)00099-7.
[2] Y. Liu, J. Zhao, F. Li, Z. Chen. et al.(2012). Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Journal of Computational Chemistry.34(2):121-131. DOI: 10.1016/s1093-3263(01)00099-7.
[3] X. Li, M. J. Frisch. (2006). Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. Journal of Chemical Theory and Computation.2(3):835-839. DOI: 10.1016/s1093-3263(01)00099-7.
[4] A. D. McLean, G. S. Chandler. (1980). Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. Journal of Chemical Physics.72(10):5639-5648. DOI: 10.1016/s1093-3263(01)00099-7.
[5] K. S. Thanthiriwatte, E. G. Hohenstein, L. A. Burns, C. D. Sherrill. et al.(2011). Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. Journal of Chemical Theory and Computation.7(1):88-96. DOI: 10.1016/s1093-3263(01)00099-7.
[6] N. K. V. Monteiro, C. L. Firme. (2014). Hydrogen-hydrogen bonds in highly branched alkanes and in alkane complexes: a DFT, ab initio, QTAIM, and ELF study. Journal of Physical Chemistry A.118(9):1730-1740. DOI: 10.1016/s1093-3263(01)00099-7.
[7] T. Lu. (2014). MultiWFN‐A Multifunctional Wavefunction Analyzer, Version 3.3.9,. DOI: 10.1016/s1093-3263(01)00099-7.
[8] W. Humphrey, A. Dalke, K. Schulten. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics.14(1):33-38. DOI: 10.1016/s1093-3263(01)00099-7.
[9] J. R. Premkumar, D. Umadevi, G. N. Sastry. (2014). Quantifying dispersion interaction: a study of alkane and alkene dimers. Indian Journal of Chemistry-Section A: Inorganic, Physical, Theoretical and Analytical Chemistry.53:985-991. DOI: 10.1016/s1093-3263(01)00099-7.
[10] M. J. Frisch, G. W. Trucks, H. B. Schlegel. (2009). Gaussian 09, Revision A.01. DOI: 10.1016/s1093-3263(01)00099-7.
[11] E. Kleinpeter, S. Klod, W. D. Rudorf. (2004). Electronic state of push−pull alkenes: an experimental dynamic NMR and theoretical ab initio MO study. Journal of Organic Chemistry.69(13):4317-4329. DOI: 10.1016/s1093-3263(01)00099-7.
[12] J. Contreras-García, E. R. Johnson, S. Keinan. (2011). NCIPLOT: a program for plotting noncovalent interaction regions. Journal of Chemical Theory and Computation.7(3):625-632. DOI: 10.1016/s1093-3263(01)00099-7.
[13] J. P. Jalkanen, S. Pulkkinen, T. A. Pakkanen, R. L. Rowley. et al.(2005). Quantum chemical interaction energy surfaces of ethylene and propene dimers. Journal of Physical Chemistry A.109(12):2866-2874. DOI: 10.1016/s1093-3263(01)00099-7.
[14] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García. et al.(2010). Revealing noncovalent interactions. Journal of the American Chemical Society.132(18):6498-6506. DOI: 10.1016/s1093-3263(01)00099-7.
[15] D. R. Herschbach, L. C. Krisher. (1958). Microwave spectrum of CH2DCH: CH2; equilibrium conformation of propylene. Journal of Chemical Physics.28(4):728-729. DOI: 10.1016/s1093-3263(01)00099-7.
[16] R. F. W. Bader. (1994). Atoms in Molecules a Quantum Theory. DOI: 10.1016/s1093-3263(01)00099-7.
[17] F. Biegler-Konig, J. Schonbohm, D. Bayles. (2001). Software news and updates-AIM2000-a program to analyze and visualize atoms in molecules. Journal of Computational Chemistry.22:545-559. DOI: 10.1016/s1093-3263(01)00099-7.
[18] T. Lu, F. Chen. (2011). Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry.33(5):580-592. DOI: 10.1016/s1093-3263(01)00099-7.
[19] S. D. Nelson, P. G. Seybold. (2001). Molecular structure-property relationships for alkenes. Journal of Molecular Graphics and Modelling.20(1):36-53. DOI: 10.1016/s1093-3263(01)00099-7.
[20] C. L. Firme. (2019). Introductory Organic Chemistry and Hydrocarbons-A Physical Chemistry Approach. DOI: 10.1016/s1093-3263(01)00099-7.
[21] P. Pulay. (1982). ImprovedSCF convergence acceleration. Journal of Computational Chemistry.3(4):556-560. DOI: 10.1016/s1093-3263(01)00099-7.
[22] A. Forni, S. Pieraccini, S. Rendine, M. Sironi. et al.(2013). Halogen bonds with benzene: an assessment of DFT functionals. Journal of Computational Chemistry.35(5):386-394. DOI: 10.1016/s1093-3263(01)00099-7.
[23] F. A. Carroll, J. M. Godinho, F. H. Quina. (2011). Development of a simple method to predict boiling points and flash points of acyclic alkenes. Industrial and Engineering Chemistry Research.50(24):14221-14225. DOI: 10.1016/s1093-3263(01)00099-7.
[24] G. R. Silva de Freitas, C. L. Firme. (2013). New insights into the stability of alkenes and alkynes, fluoro-substituted or not: a DFT, G4, QTAIM and GVB study. Journal of Molecular Modeling.19(12):5267-5276. DOI: 10.1016/s1093-3263(01)00099-7.
[25] F. Wu, X. Chen, X. Shan, S. X. Tian. et al.(2008). Conformational stability of 1-butene: an electron momentum spectroscopy investigation. Journal of Physical Chemistry A.112(18):4360-4366. DOI: 10.1016/s1093-3263(01)00099-7.
[26] T. H. Dunning. (1970). Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms. Journal of Chemical Physics.53(7):2823-2833. DOI: 10.1016/s1093-3263(01)00099-7.
[27] A. Holme, K. J. Børve, L. J. Sæthre, T. D. Thomas. et al.(2013). Conformations and CH/ interactions in aliphatic alkynes and alkenes. Journal of Physical Chemistry A.117(9):2007-2019. DOI: 10.1016/s1093-3263(01)00099-7.
文献评价指标
浏览 18次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 0次