首页 » 文章 » 文章详细信息
International Journal of Photoenergy Volume 2019 ,2019-01-16
Optimum Array Spacing in Grid-Connected Photovoltaic Systems considering Technical and Economic Factors
Research Article
S. Sánchez-Carbajal 1 P. M. Rodrigo 1
Show affiliations
DOI:10.1155/2019/1486749
Received 2018-08-22, accepted for publication 2018-11-12, Published 2018-11-12
PDF
摘要

The performance and economics of grid-connected photovoltaic (PV) systems are affected by the array spacing. Increasing the array spacing implies reducing the impact of shading, but at the same time, it increases the land purchase/preparation costs and the wiring costs. A number of technical and economic factors are involved when selecting an optimum array spacing. Designers of PV plants often set the row-to-row spacing based on simplified rules, losing the opportunity of improving the profitability of their projects. In this paper, a comprehensive methodology for optimizing the array spacing is proposed. It is based on annual shading energy calculations and incorporates a PV energy yield model together with an economic model focused on investment costs. The method is applied to the climatic conditions in Aguascalientes, Mexico, as a case study. A sensitivity analysis allowed the impact of the technical and economic parameters involved on the optimum interrow distance to be quantified. According to the results, the most relevant technical parameters are the module tilt (often considered by the PV designers), the ratio of plant width to plant length, and the module efficiency. The main economic parameters are the land-related costs and the costs per kWp. The comparison of this methodology to a conventional rule based on the winter solstice condition shows differences in the array spacing for the same location when the multiple technical and economic parameters are considered. Therefore, the proposed method will be useful for PV designers to improve the energetic and economic behavior of their systems.

授权许可

Copyright © 2019 S. Sánchez-Carbajal and P. M. Rodrigo. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

S. Sánchez-Carbajal.Universidad Panamericana, Facultad de Ingeniería, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Aguascalientes, Mexico, up.edu.mx.santiagoscarbajal@gmail.com

推荐引用方式

S. Sánchez-Carbajal,P. M. Rodrigo. Optimum Array Spacing in Grid-Connected Photovoltaic Systems considering Technical and Economic Factors. International Journal of Photoenergy ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright. et al.(1998). Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization.9(1):112-147. DOI: 10.1016/0379-6787(87)90068-8.
[2] P. M. Rodrigo. Improving the profitability of grid-connected photovoltaic systems by sizing optimization. . DOI: 10.1016/0379-6787(87)90068-8.
[3] B. Bletterie, R. Bründlinger, G. Lauss. (2011). On the characterisation of PV inverters’ efficiency - introduction to the concept of achievable efficiency. Progress in Photovoltaics: Research and Applications.19(4):423-435. DOI: 10.1016/0379-6787(87)90068-8.
[4] M. Iqbal. (1983). An Introduction to Solar Radiation. DOI: 10.1016/0379-6787(87)90068-8.
[5] Australian Photovoltaic Institute. (2014). Solar Potential Tool. DOI: 10.1016/0379-6787(87)90068-8.
[6] A. Martinez-Rubio, F. Sanz-Adan, J. Santamaria. (2015). Optimal design of photovoltaic energy collectors with mutual shading for pre-existing building roofs. Renewable Energy.78:666-678. DOI: 10.1016/0379-6787(87)90068-8.
[7] P. P. Groumpos, K. Khouzam. (1987). A generic approach to the shadow effect of large solar power systems. Solar Cells.22(1):29-46. DOI: 10.1016/0379-6787(87)90068-8.
[8] K. Peippo, P. D. Lund. (1994). Optimal sizing of solar array and inverter in grid-connected photovoltaic systems. Solar Energy Materials and Solar Cells.32(1):95-114. DOI: 10.1016/0379-6787(87)90068-8.
[9] S. Gutiérrez, P. M. Rodrigo. (2017). Energetic analysis of simplified 2-position and 3-position North-South horizontal single-axis sun tracking concepts. Solar Energy.157:244-250. DOI: 10.1016/0379-6787(87)90068-8.
[10] J. Appelbaum, J. Bany. (1979). Shadow effect of adjacent solar collectors in large scale systems. Solar Energy.23(6):497-507. DOI: 10.1016/0379-6787(87)90068-8.
[11] C. Rus-Casas, J. D. Aguilar, P. Rodrigo, F. Almonacid. et al.(2014). Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Conversion and Management.78:527-536. DOI: 10.1016/0379-6787(87)90068-8.
[12] J. K. Copper, A. B. Sproul, A. G. Bruce. (2016). A method to calculate array spacing and potential system size of photovoltaic arrays in the urban environment using vector analysis. Applied Energy.161(1):11-23. DOI: 10.1016/0379-6787(87)90068-8.
[13] H. Awad, M. Gul, C. Ritter, P. Verma. et al.Solar photovoltaic optimization for commercial flat rooftops in cold regions. . DOI: 10.1016/0379-6787(87)90068-8.
[14] P. J. Pérez-Higueras, F. M. Almonacid, P. M. Rodrigo, E. F. Fernández. et al.(2018). Optimum sizing of the inverter for maximizing the energy yield in state-of-the-art high-concentrator photovoltaic systems. Solar Energy.171:728-739. DOI: 10.1016/0379-6787(87)90068-8.
[15] International Electrotechnical Commission (IEC). (2011). IEC 61853–1: Photovoltaic (PV) Module Performance Testing and Energy Rating - Part 1: Irradiance and Temperature Performance Measurements and Power Rating. DOI: 10.1016/0379-6787(87)90068-8.
[16] T. Maor, J. Appelbaum. (2012). View factors of photovoltaic collector systems. Solar Energy.86(6):1701-1708. DOI: 10.1016/0379-6787(87)90068-8.
[17] N. N. Castellano, J. A. Gázquez Parra, J. Valls-Guirado, F. Manzano-Agugliaro. et al.(2015). Optimal displacement of photovoltaic array’s rows using a novel shading model. Applied Energy.144:1-9. DOI: 10.1016/0379-6787(87)90068-8.
[18] D. Weinstock, J. Appelbaum. (2009). Optimization of solar photovoltaic fields. Journal of Solar Energy Engineering.131(3, article 031003). DOI: 10.1016/0379-6787(87)90068-8.
[19] P. M. Rodrigo, R. Velázquez, E. F. Fernández. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy.139:650-665. DOI: 10.1016/0379-6787(87)90068-8.
[20] M. M. Elsayed, A. M. al-Turki. (1991). Calculation of shading factor for a collector field. Solar Energy.47(6):413-424. DOI: 10.1016/0379-6787(87)90068-8.
[21] D. Weinstock, J. Appelbaum. (2004). Optimal solar field design of stationary collectors. Journal of Solar Energy Engineering.126(3):898-905. DOI: 10.1016/0379-6787(87)90068-8.
[22] S. B. Sadineri, R. F. Boehm, R. Hurt. Spacing analysis of an inclined solar collector field. :417-422. DOI: 10.1016/0379-6787(87)90068-8.
文献评价指标
浏览 33次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次