首页 » 文章 » 文章详细信息
International Journal of Photoenergy Volume 2019 ,2019-01-15
Impact of Hydrogen Peroxide on the UVC Photolysis of Diclofenac and Toxicity of the Phototransformation Products
Research Article
Stanisław Ledakowicz 1 Emilia Drozdek 1 Tomasz Boruta 1 Magdalena Foszpańczyk 1 Magdalena Olak-Kucharczyk 2 Renata Żyłła 2 Marta Gmurek 1
Show affiliations
DOI:10.1155/2019/1086704
Received 2018-07-16, accepted for publication 2018-09-27, Published 2018-09-27
PDF
摘要

The aim of this study was to investigate the effect of hydrogen peroxide on the UVC photolysis of diclofenac (DCF) in aqueous solution. The experimental results confirmed very high effectivity of UVC direct photolysis of diclofenac. Moreover, it was found that H2O2/UV only slightly improved photodegradation; however, the addition of hydrogen peroxide into the reaction system affected the mechanism of DCF decomposition. Kinetics of the DCF reaction with ⋅OH radicals in the UV/H2O2 process was determined. For both processes, namely, photolysis and UV/H2O2, an in-depth analysis focused on the formation of phototransformation products of DCF (TPs) was performed. To the best of our knowledge, such comprehensive comparison of diclofenac photodegradation via UVC photolysis and UV/H2O2 has not been presented so far. Although there were no significant differences with regard to the rate of diclofenac degradation by photolysis and UV/H2O2, different oxidation products were found to be associated with the two considered processes. Furthermore, the H2O2/UV treatment increased toxicity towards Vibrio fischeri, while direct UVC photolysis had no significant effect on toxicity. The increase in toxicity can be attributed to the breakdown of DCF and formation of much more toxic TPs in the course of the H2O2/UVC process.

授权许可

Copyright © 2019 Stanisław Ledakowicz et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Renata Żyłła.Textile Research Institute, Brzezinska 5/15, Lodz, Poland, iw.lodz.pl.zylla@iw.lodz.pl
2. Marta Gmurek.Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213/215, Lodz, Poland, p.lodz.pl.marta.gmurek@p.lodz.pl

推荐引用方式

Stanisław Ledakowicz,Emilia Drozdek,Tomasz Boruta,Magdalena Foszpańczyk,Magdalena Olak-Kucharczyk,Renata Żyłła,Marta Gmurek. Impact of Hydrogen Peroxide on the UVC Photolysis of Diclofenac and Toxicity of the Phototransformation Products. International Journal of Photoenergy ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. H. Baxendale, J. A. Wilson. (1957). The Photolysis of hydrogen peroxide at high light intensities. Transactions of the Faraday Society.53:344-356. DOI: 10.1016/j.watres.2003.09.028.
[2] I.-Y. Kim, M.-K. Kim, Y. Yoon, J.-K. Im. et al.(2013). Kinetics and degradation mechanism of clofibric acid and diclofenac in UV photolysis and UV/HO reaction. Desalination and Water Treatment.52(31-33):6211-6218. DOI: 10.1016/j.watres.2003.09.028.
[3] J. Peuravuori. (2012). Aquatic photochemistry of paracetamol in the presence of dissolved organic chromophoric material and nitrate. Environmental Science and Pollution Research.19(6):2259-2270. DOI: 10.1016/j.watres.2003.09.028.
[4] N. Zhang, G. Liu, H. Liu, Y. Wang. et al.(2011). Diclofenac photodegradation under simulated sunlight: effect of different forms of nitrogen and kinetics. Journal of Hazardous Materials.192(1):411-418. DOI: 10.1016/j.watres.2003.09.028.
[5] H. Yu, E. Nie, J. Xu, S. Yan. et al.(2013). Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments. Water Research.47(5):1909-1918. DOI: 10.1016/j.watres.2003.09.028.
[6] M. M. Huber, A. Gobel, A. Joss, N. Hermann. et al.(2005). Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science & Technology.39(11):4290-4299. DOI: 10.1016/j.watres.2003.09.028.
[7] C. Martínez, M. Canle L., M. I. Fernández, J. A. Santaballa. et al.(2011). Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Applied Catalysis B: Environmental.107(1-2):110-118. DOI: 10.1016/j.watres.2003.09.028.
[8] L. A. Pérez-Estrada, S. Malato, W. Gernjak, A. Agüera. et al.(2005). Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environmental Science & Technology.39(21):8300-8306. DOI: 10.1016/j.watres.2003.09.028.
[9] A. J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants.3(1):1-16. DOI: 10.1016/j.watres.2003.09.028.
[10] D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi. et al.(2004). Advanced oxidation of the pharmaceutical drug diclofenac with UV/HO and ozone. Water Research.38(2):414-422. DOI: 10.1016/j.watres.2003.09.028.
[11] B. M. Peake, R. Braund, A. Y. C. Tong, L. A. Tremblay. et al.(2016). Impact of pharmaceuticals on the environment. The Life-Cycle of Pharmaceuticals in the Environment:109-152. DOI: 10.1016/j.watres.2003.09.028.
[12] T. Haap, R. Triebskorn, H.-R. Köhler. (2008). Acute effects of diclofenac and DMSO to : immobilisation and hsp70-induction. Chemosphere.73(3):353-359. DOI: 10.1016/j.watres.2003.09.028.
[13] Y. Zhang, S. U. Geißen, C. Gal. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere.73(8):1151-1161. DOI: 10.1016/j.watres.2003.09.028.
[14] B. Czech, I. Jośko, P. Oleszczuk. (2014). Ecotoxicological evaluation of selected pharmaceuticals to and before and after photooxidation process. Ecotoxicology and Environmental Safety.104:247-253. DOI: 10.1016/j.watres.2003.09.028.
[15] R. Salgado, V. J. Pereira, G. Carvalho, R. Soeiro. et al.(2013). Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. Journal of Hazardous Materials.244-245:516-527. DOI: 10.1016/j.watres.2003.09.028.
[16] F. Mendez-Arriaga, S. Esplugas, J. Gimenez. (2008). Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO and simulated solar irradiation. Water Research.42(3):585-594. DOI: 10.1016/j.watres.2003.09.028.
[17] I. Nicole, J. Delaat, M. Dore, J. Duguet. et al.(1990). Utilisation du rayonnement ultraviolet dans le traitement des eaux: mesure du flux photonique par actinometrie chimique au peroxyde d'hydrogene. Water Research.24(2):157-168. DOI: 10.1016/j.watres.2003.09.028.
[18] P. Calza, V. Sakkas, C. Medana, C. Baiocchi. et al.(2006). Photocatalytic degradation study of diclofenac over aqueous TiO suspensions. Applied Catalysis B: Environmental.67(3-4):197-205. DOI: 10.1016/j.watres.2003.09.028.
[19] S. Poirier-Larabie, P. A. Segura, C. Gagnon. (2016). Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions. Science of the Total Environment.557-558:257-267. DOI: 10.1016/j.watres.2003.09.028.
[20] D. BŁędzka, D. Gryglik, M. Olak, J. L. Gębicki. et al.(2010). Degradation of -butylparaben and 4--octylphenol in HO/UV system. Radiation Physics and Chemistry.79(4):409-416. DOI: 10.1016/j.watres.2003.09.028.
[21] K. A. K. Musa, L. A. Eriksson. (2009). Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct. Physical Chemistry Chemical Physics.11(22):4601-4610. DOI: 10.1016/j.watres.2003.09.028.
[22] I. Michael, A. Achilleos, D. Lambropoulou, V. O. Torrens. et al.(2014). Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Applied Catalysis B: Environmental.147:1015-1027. DOI: 10.1016/j.watres.2003.09.028.
[23] S. Canonica, L. Meunier, U. von Gunten. (2008). Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research.42(1-2):121-128. DOI: 10.1016/j.watres.2003.09.028.
[24] J. Hoigné. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. Quality and Treatment of Drinking Water II:83-141. DOI: 10.1016/j.watres.2003.09.028.
[25] D. Jankunaite, M. Tichonovas, D. Buivydiene, I. Radziuniene. et al.(2017). Removal of diclofenac, ketoprofen, and carbamazepine from simulated drinking water by advanced oxidation in a model reactor. Water, Air, & Soil Pollution.228(9, article 353). DOI: 10.1016/j.watres.2003.09.028.
[26] J. Eriksson, J. Svanfelt, L. Kronberg. (2010). A photochemical study of diclofenac and its major transformation products. Photochemistry and Photobiology.86(3):528-532. DOI: 10.1016/j.watres.2003.09.028.
[27] A. Aguinaco, F. J. Beltrán, J. F. García-Araya, A. Oropesa. et al.(2012). Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables. Chemical Engineering Journal.189-190:275-282. DOI: 10.1016/j.watres.2003.09.028.
[28] O. S. Keen, E. M. Thurman, I. Ferrer, A. D. Dotson. et al.(2013). Dimer formation during UV photolysis of diclofenac. Chemosphere.93(9):1948-1956. DOI: 10.1016/j.watres.2003.09.028.
[29] P. Bartels, W. von Tumpling. (2007). Solar radiation influence on the decomposition process of diclofenac in surface waters. Science of the Total Environment.374(1):143-155. DOI: 10.1016/j.watres.2003.09.028.
[30] S. K. Alharbi, J. Kang, L. D. Nghiem, J. P. van de Merwe. et al.(2017). Photolysis and UV/HO of diclofenac, sulfamethoxazole, carbamazepine, and trimethoprim: identification of their major degradation products by ESI–LC–MS and assessment of the toxicity of reaction mixtures. Process Safety and Environmental Protection.112:222-234. DOI: 10.1016/j.watres.2003.09.028.
[31] L. Rizzo, S. Meric, D. Kassinos, M. Guida. et al.(2009). Degradation of diclofenac by TiO photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Research.43(4):979-988. DOI: 10.1016/j.watres.2003.09.028.
[32] M. Kovacic, D. Juretic Perisic, M. Biosic, H. Kusic. et al.(2016). UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environmental Science and Pollution Research.23(15):14908-14917. DOI: 10.1016/j.watres.2003.09.028.
[33] M. Cleuvers. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety.59(3):309-315. DOI: 10.1016/j.watres.2003.09.028.
[34] S. Agopcan Cinar, A. Ziylan-Yavaş, S. Catak, N. H. Ince. et al.(2017). Hydroxyl radical-mediated degradation of diclofenac revisited: a computational approach to assessment of reaction mechanisms and by-products. Environmental Science and Pollution Research.24(22):18458-18469. DOI: 10.1016/j.watres.2003.09.028.
[35] G. Persoone, B. Marsalek, I. Blinova, A. Törökne. et al.(2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology.18(6):395-402. DOI: 10.1016/j.watres.2003.09.028.
[36] A. Agüera, L. A. Pérez Estrada, I. Ferrer, E. M. Thurman. et al.(2005). Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of Mass Spectrometry.40(7):908-915. DOI: 10.1016/j.watres.2003.09.028.
[37] A. Avdeef, C. M. Berger, C. Brownell. (2000). pH-metric solubility. 2: correlation between the acid-base titration and the saturation shake-flask solubility-pH methods. Pharmaceutical Research.17(1):85-89. DOI: 10.1016/j.watres.2003.09.028.
[38] H. Christensen, K. Sehested, H. Corfitzen. (1982). Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. The Journal of Physical Chemistry.86(9):1588-1590. DOI: 10.1016/j.watres.2003.09.028.
[39] K. Lekkerkerker-Teunissen, M. J. Benotti, S. A. Snyder, H. C. van Dijk. et al.(2012). Transformation of atrazine, carbamazepine, diclofenac and sulfamethoxazole by low and medium pressure UV and UV/HO treatment. Separation and Purification Technology.96:33-43. DOI: 10.1016/j.watres.2003.09.028.
文献评价指标
浏览 26次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次