首页 » 文章 » 文章详细信息
International Journal of Chemical Engineering Volume 2019 ,2019-01-16
Structured Polyvinyl Alcohol/Zeolite/Carbon Composites Prepared Using Supercritical Fluid Extraction Techniques as Adsorbent for Bioethanol Dehydration
Research Article
Joddy Arya Laksmono 1 , 2 Mahmud Sudibandriyo 1 Asep Handaya Saputra 1 Agus Haryono 2
Show affiliations
DOI:10.1155/2019/6036479
Received 2018-08-13, accepted for publication 2018-12-16, Published 2018-12-16
PDF
摘要

Introduction. Adsorption is a purification process with a more efficient energy level than others. Adsorption performance is strongly influenced by the ability of the adsorbent to be used; therefore, the modification of the adsorbent becomes a very important key for the purification process that occurs. Methods. In this study, the preparation of composite adsorbents was carried out by combining polyvinyl alcohol (PVA), zeolite (Zeo), and activated carbon (AC) as precursors. The crosslinking process was fulfilled by adding glutaraldehyde to the precursor mixtures followed by a supercritical fluid CO2 extraction (SFE) technique to create conditions for the crosslinking process. The composites were analyzed using Braunner–Emmet–Teller (BET) surface area analysis, Fourier-transform infrared (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy with energy dispersive X-ray (SEM/EDX-mapping), while individual and composite adsorbents were evaluated for their ability in bioethanol dehydration at various initial concentrations of ethanol and temperature. Results. The BET characterization shows that composite preparation under supercritical CO2 conditions provides reasonable surface areas, which are proportional to the content of activated carbon. The crosslinking process has been described by FTIR data interpretation, showing that PVA and glutaraldehyde were properly distributed on Zeo and AC precursors. The DSC characterization results give information that PVA successfully forms hydrophilic composites within Zeo and AC. The SEM micrograph analysis shows the formation of pores on the surface and cross section in structured adsorbents. The experimental adsorption shows that an increasing amount of AC in the composites increases the capacity of water adsorption (i.e., 0.80 gram of water/gram of adsorbent for PVA/Zeo/AC = 1 : 1 : 1 at 22°C). However, the effect is not significant when the ratio of AC is less than 0.5. As expected, the lower temperature increases the adsorption capacity. Further, by using approximately 4.5 gram adsorbents composite in 30 ml of water-ethanol mixtures, high concentration of bioethanol (>99%) can be achieved at various temperatures from 22°C to 40°C and bioethanol initial concentration from 88% to 96%. Conclusion. The SFE technique provides distinguished adsorbents composite properties. Further, the new composites provide about four times better adsorption capacity than that showed in the individual adsorbents test. The addition of AC influences on increasing the capacity and adsorption kinetics value.

授权许可

Copyright © 2019 Joddy Arya Laksmono et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Mahmud Sudibandriyo.Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia (UI), Kampus UI, Depok 16424, Indonesia.msudib@che.ui.ac.id

推荐引用方式

Joddy Arya Laksmono,Mahmud Sudibandriyo,Asep Handaya Saputra,Agus Haryono. Structured Polyvinyl Alcohol/Zeolite/Carbon Composites Prepared Using Supercritical Fluid Extraction Techniques as Adsorbent for Bioethanol Dehydration. International Journal of Chemical Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] I. I. El-Sharkawy, K. Uddin, T. Miyazaki. (2014). Adsorption of ethanol onto parent and surface treated activated carbon powders. International Journal of Heat and Mass Transfer.73:445-455. DOI: 10.1016/j.rser.2014.10.097.
[2] J. A. Delgado, V. I. Águeda, M. A. Uguina. (2013). Separation of ethanol-water liquid mixtures by adsorption on a polymeric resin Sepabeads 207. Chemical Engineering Journal.220:89-97. DOI: 10.1016/j.rser.2014.10.097.
[3] K.-S. Wang, C.-C. Liao, R. Q. Chu, T.-W. Chung. et al.(2010). Equilibrium Isotherms of Water and Ethanol Vapors on Starch Sorbents and Zeolite 3A. Journal of Chemical and Engineering Data.55(9):3334-3337. DOI: 10.1016/j.rser.2014.10.097.
[4] S. Kulprathipanja. (2010). Zeolites in Industrial Separation and Catalysis. DOI: 10.1016/j.rser.2014.10.097.
[5] M. Morales, J. Quintero, R. Conejeros, G. Aroca. et al.(2015). Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renewable and Sustainable Energy Reviews.42:1349-1361. DOI: 10.1016/j.rser.2014.10.097.
[6] C. A. Finch. (1992). Polyvinyl Alcohol Development. DOI: 10.1016/j.rser.2014.10.097.
[7] Renewable fuels association. (July 2018). Industry statistics for world fuel ethanol production. . DOI: 10.1016/j.rser.2014.10.097.
[8] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Águeda. et al.(2012). Separation of Ethanol-water liquid mixtures by adsorption on silicalite. Chemical Engineering Journal.180:137-144. DOI: 10.1016/j.rser.2014.10.097.
[9] E. Ivanova, D. Damgaliev, M. Kostova. (2009). Adsorption separation on ethanol—water liquid mixtures by natural clinoptilolite. Journal of the University of Chemical Technology and Metalurgy.44(3):267-274. DOI: 10.1016/j.rser.2014.10.097.
[10] S. G. Kazarian. (2000). Polymer processing with supercritical fluids. Polymer Science, Series C.42(1):78-101. DOI: 10.1016/j.rser.2014.10.097.
[11] J. A. Laksmono, M. Sudibandriyo, A. H. Saputra, A. Haryono. et al.(2017). Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent. IOP Conference Series: Materials Science and Engineering.201. DOI: 10.1016/j.rser.2014.10.097.
[12] S. H. Mood, A. H. Golfeshan, M. Tabatabaei. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews.27:77-93. DOI: 10.1016/j.rser.2014.10.097.
[13] J. A. Laksmono, I. M. Pratiwi, M. Sudibandriyo, A. Haryono. et al.(2017). Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbents. AIP Conference Proceedings.1904(1). DOI: 10.1016/j.rser.2014.10.097.
[14] B. Adnadevic, Z. Mojovic, A. Abu Rabi. (2008). The kinetics of ethanol adsorption from the aqueous phase onto zeolite NaZSM-5. Adsorption.14(1):123-131. DOI: 10.1016/j.rser.2014.10.097.
[15] A. Elsayed, S. Mahmoud, R. Al-Dadah, J. Bowen. et al.(2014). Experimental and numerical investigation of the effect of pellet size on the adsorption characteristics of activated carbon/ethanol. Energy Procedia.61:2327-2330. DOI: 10.1016/j.rser.2014.10.097.
[16] M. Balat, H. Balat, C. Öz. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science.34(5):551-573. DOI: 10.1016/j.rser.2014.10.097.
[17] M. Sudibandriyo, S. A. Mohammad, R. L. Robinson, K. A. M. Gasem. et al.(2010). Ono-Kondo lattice model for high-pressure adsorption: Pure gases. Fluid Phase Equilibria.299(2):238-251. DOI: 10.1016/j.rser.2014.10.097.
[18] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo. et al.(2015). Separation of ethanol-water liquid mixtures by adsorption on BPL activated carbon with air regeneration. Separation and Purification Technology.149:370-380. DOI: 10.1016/j.rser.2014.10.097.
[19] P. R. Sukhla, S. Wang, H. M. Ang, M. O. Tade. et al.(2009). Synthesis, characterization, and adsorption evaluation of carbon-natural zeolite composite. Advanced Powder Technology.20(3):245-250. DOI: 10.1016/j.rser.2014.10.097.
[20] R. Sabarish, G. Unnikrishnan. (2018). Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydrate Polymers.199:129-140. DOI: 10.1016/j.rser.2014.10.097.
[21] V. G. Kadajji, G. V. Betageri. (2011). Water Soluble Polymers for Pharmaceutical Applications. Polymers.3(4):1972-2009. DOI: 10.1016/j.rser.2014.10.097.
[22] M. J. Burk. (2010). Sustainable production of industrial chemicals from sugars. International Sugar Journal.112:30-5. DOI: 10.1016/j.rser.2014.10.097.
[23] W.-C. Chen, C.-T. Sheng, Y.-C. Liu. (2014). Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve. Applied Energy.135:483-489. DOI: 10.1016/j.rser.2014.10.097.
[24] B. Tang, W. Bi, K. H. Row. (2013). Using poly([1-vinyl-3-hexylimidazolium] [bis(trifluoromethylsulfonyl)imide]) to adsorb bio-ethanol from a Chamaecyparis obtuse leaves fermentation broth. Bioresource Technology.137:25-32. DOI: 10.1016/j.rser.2014.10.097.
[25] A. J. Romero-Anaya, M. A. Lillo-Ródenas, A. Linares-Solano. (2015). Factors governing the adsorption of ethanol on spherical activated carbons. Carbon.83:240-249. DOI: 10.1016/j.rser.2014.10.097.
[26] T. Armbruster. (1993). Dehydration mechanism of clinoptilolite and heulandite: single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 KSample Dehyd 2Data obtained from the ICSD. American Mineralogist.78:260-264. DOI: 10.1016/j.rser.2014.10.097.
[27] M. Vázquez-Ojeda, J. G. Segovia-Hernández, S. Hernández, A. Hernández-Aguirre. et al.(2013). Design and optimization of an ethanol dehydration process using stochastic methods. Separation and Purification Technology.105:90-97. DOI: 10.1016/j.rser.2014.10.097.
[28] F. B. Mendes, D. Ibraim Pires Atala, J. C. Thoméo. (2017). Is cellulase production by solid-state fermentation economically attractive for the second generation ethanol production?. Renewable Energy.114:525-533. DOI: 10.1016/j.rser.2014.10.097.
[29] Y. Wang, C. Gong, J. Sun, H. Gao. et al.(2010). Separation of ethanol/water azeotrope using compound starch-based adsorbents. Bioresource Technology.101(15):6170-6176. DOI: 10.1016/j.rser.2014.10.097.
[30] R. C. Bansal, M. Goyal. (2005). Activated Carbon Adsorption. DOI: 10.1016/j.rser.2014.10.097.
[31] B. Sarkar, K. Sunitha, S. Sridhar, V. Kale. et al.(2013). Bioethanol dehydration through polyvinyl alcohol (PVA) and 3A zeolite mixed matrix composite pervaporation membrane. Journal of Polymer Material.30(2):131-143. DOI: 10.1016/j.rser.2014.10.097.
[32] M. Rastogi, S. Shrivastava. (2017). Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews.80:330-340. DOI: 10.1016/j.rser.2014.10.097.
[33] A. K. Frolkova, V. M. Raeva. (2010). Bioethanol dehydration: state of the art. Theoretical Foundations of Chemical Engineering.44(4):545-556. DOI: 10.1016/j.rser.2014.10.097.
[34] B. Sowerby, B. D. Crittenden. (1988). An experimental comparison of Type A molecular sieves for drying the ethanol-water azeotrope. Gas Separation and Purification.2(2):77-83. DOI: 10.1016/j.rser.2014.10.097.
[35] H. Asano, K. Murata, N. Takenaka, Y. Saito. et al.(2015). Visualization and measurement of adsorption/desorption process of ethanol in activated carbon adsorber. Physics Procedia.69:503-508. DOI: 10.1016/j.rser.2014.10.097.
[36] J. A. Laksmono, U. A. Pangesti, M. Sudibandriyo, A. Haryono. et al.(2018). Adsorption capacity study of ethanol-water mixture for zeolite, activated carbon, and polyvinyl alcohol. IOP Conference Series: Earth and Environmental Science.105. DOI: 10.1016/j.rser.2014.10.097.
[37] Lelifajri, M. A. Nawi, S. Sabar, Supriatno. et al.(2018). Preparation of immobilized activated carbon-polyvinyl alcohol composite for the adsorptive removal of 2,4-dichlorophenoxyacetic acid. Journal of Water Process Engineering.25:269-277. DOI: 10.1016/j.rser.2014.10.097.
[38] T. Yamamoto, Y. H. Kim, B. C. Kim. (2012). Adsorption characteristics of zeolites for dehydration of ethanol: evaluation of diffusivity of water in porous structure. Chemical Engineering Journal.181-182:443-448. DOI: 10.1016/j.rser.2014.10.097.
[39] Y. Zheng, V. M. Gun’ko, C. A. Howell. (2012). Composites with macroporous poly(vinyl alcohol) cryogels with attached activated carbon microparticles with controlled accessibility of a surface. ACS Applied Materials and Interfaces.4(11):5936-5944. DOI: 10.1016/j.rser.2014.10.097.
[40] A. A. Kiss, D. J. P. C. Suszwalak. (2012). Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing wall column. Separation and Purification Technology.86:70-78. DOI: 10.1016/j.rser.2014.10.097.
[41] H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur. et al.(2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C.28(4):539-548. DOI: 10.1016/j.rser.2014.10.097.
[42] M. Krumova, D. López, R. Benavente, C. Mijangos. et al.(2000). Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer.41(26):9265-9272. DOI: 10.1016/j.rser.2014.10.097.
文献评价指标
浏览 0次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次