首页 » 文章 » 文章详细信息
International Journal of Antennas and Propagation Volume 2019 ,2019-01-13
Theoretical and Experimental Study on Echo Fluctuation Suppression of a Cirrus Cloud by Millimeter Wave MIMO Radar
Research Article
Jinhu Wang 1 , 2 , 3 , 4 Junxiang Ge 2 Ming Wei 1 Hongbin Chen 4 Zexin Yang 2 Yushu Ren 1 Qilin Zhang 1 Hao Chen 1
Show affiliations
DOI:10.1155/2019/5937973
Received 2018-04-18, accepted for publication 2018-09-27, Published 2018-09-27
PDF
摘要

The scattering properties of nonspherical particles can be approximately computed by equivalent spherical theory. The scattering properties of ice particles were approximately computed by Rayleigh approximation because the sizes of the ice particles are smaller than the wavelength of millimeter wave radar. Based on the above assumption, the echo fluctuation of moving particles was analyzed by computing the total backscattering field of a cirrus cloud using the classical vector potential technique. The simulation results showed that echo fluctuation influences the accuracy of retrieving the physical parameters of a cloud. To suppress the echo fluctuation of moving ice particles, a video integrator of a millimeter wave cloud radar would be used. However, video integrators lose the rapidly changing information of ice particles and reduce radar range resolution; thus, we propose the pace-diversity technique of MIMO radar to reduce the echo fluctuation, which could be validated by theoretical computation and experimental measurements.

授权许可

Copyright © 2019 Jinhu Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jinhu Wang.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China, nuist.edu.cn;Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China, nuist.edu.cn;National Demonstration Center for Experimental Atmospheric Science and Environmental Meteorology Education, Nanjing University of Information Science and Technology, Nanjing 210044, China, nuist.edu.cn;Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, cas.cn.goldtigerwang@nuist.edu.cn

推荐引用方式

Jinhu Wang,Junxiang Ge,Ming Wei,Hongbin Chen,Zexin Yang,Yushu Ren,Qilin Zhang,Hao Chen. Theoretical and Experimental Study on Echo Fluctuation Suppression of a Cirrus Cloud by Millimeter Wave MIMO Radar. International Journal of Antennas and Propagation ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] L. G. Yuan, P. He. (1988). Video integrator and processor of weather radar. Journal of Guangxi Meteorology.9(4):72-76. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[2] K. Aydin, C. Tang. (1997). Relationships between IWC and polarimetric radar measurands at 94 and 220 GHz for hexagonal columns and plates. Journal of Atmospheric and Oceanic Technology.14(5):1055-1063. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[3] T. L. Schneider, G. L. Stephens. (1995). Theoretical aspects of modeling backscattering by cirrus ice particles at millimeter wavelengths. Journal of the Atmospheric Sciences.52(23):4367-4385. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[4] L. Rayleigh. (1871). On the light from the sky, its polarization and colour. Philosophical Magazine.41:107-120. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[5] M. I. Mishchenko, L. D. Travis. (1998). Capabilities and limitations of a current FORTRAN implementation of the -matrix method for randomly oriented, rotationally symmetric scatterers. Journal of Quantitative Spectroscopy and Radiative Transfer.60(3):309-324. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[6] P. C. Zhang, B. Y. Du, T. P. Dai. (2000). Radar Meteorology. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[7] H. C. Van de Hulst. (1981). Light Scattering by Small Particles. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[8] C. F. Bohren, D. R. Huffman. (1983). Absorption and Scattering of Light by Small Particles. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[9] K. N. Liou. (1986). Influence of cirrus clouds on weather and climate processes: a global perspective. Monthly Weather Review.114(6):1167-1199. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[10] K. P. Moran, B. E. Martner, M. J. Post, R. A. Kropfli. et al.(1998). An unattended cloud-profiling radar for use in climate research. Bulletin of the American Meteorological Society.79(3):443-455. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[11] S. M. Sekelsky, L. Li, G. A. Sadowy, S. L. Durden. et al.Measurements of atmospheric extinction using combined airborne and ground-based 95 GHz radar observations. :461-463. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[12] R. F. Harrington. (1968). Field Computation by Moment Methods. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[13] G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau. et al.(1990). The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of the Atmospheric Sciences.47(14):1742-1754. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[14] N. I. Fox, A. J. Illingworth. (1997). The retrieval of stratocumulus cloud properties by ground-based cloud radar. Journal of Applied Meteorology.36(5):485-492. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[15] K. F. Evans, G. L. Stephens. (1995). Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I. Single scattering properties. Journal of the Atmospheric Sciences.52(11):2041-2057. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[16] D. K. Lynch, K. Sassen, D. O. Starr, G. Stephens. et al.(2002). Cirrus. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[17] M. Morgan, K. Mei. (1979). Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution. IEEE Transactions on Antennas and Propagation.27(2):202-214. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[18] L. Li, S. M. Sekelsky, S. C. Reising, C. T. Swift. et al.(2001). Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements. Journal of Atmospheric and Oceanic Technology.18(8):1345-1353. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[19] B. T. Draine, P. J. Flatau. (1994). Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A.11(4):1491-1499. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[20] C. Liu, R. L. Panetta, P. Yang. (2013). The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes. Journal of Quantitative Spectroscopy and Radiative Transfer.129:169-185. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[21] J. Wang, J. Ge, Q. Zhang, X. Li. et al.(2016). Radar cross-section measurements of ice particles using vector network analyzer. AIP Advances.6(9, article 095310). DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[22] G. Mie. (1908). Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik.330(3):377-445. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[23] K. F. Evans, G. L. Stephens. (1995). Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II. Remote sensing of ice clouds. Journal of the Atmospheric Sciences.52(11):2058-2072. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[24] S. J. Zhang. (2009). Theory of Electromagnetic Engineering. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[25] C. Liu, P. Yang, P. Minnis, N. Loeb. et al.(2014). A two-habit model for the microphysical and optical properties of ice clouds. Atmospheric Chemistry and Physics.14(24):13719-13737. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[26] Z. Zhang, P. Yang, G. W. Kattawar, S. C. Tsay. et al.(2004). Geometrical-optics solution to light scattering by droxtal ice crystals. Applied Optics.43(12):2490-2499. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[27] N. A. Logan. (1965). Survey of some early studies of the scattering of plane waves by a sphere. Proceedings of the IEEE.53(8):773-785. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[28] J. S. Marshall, W. Hitschfeld. (1953). Interpretation of the fluctuating echo from randomly distributed scatterers. Part I. Canadian Journal of Physics.31(6):962-994. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[29] G. L. Stephens, D. G. Vane, R. J. Boain, G. G. Mace. et al.(2002). The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society.83(12):1771-1790. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[30] C. Kummerow, W. Barnes, T. Kozu, J. Shiue. et al.(1998). The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology.15(3):809-817. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
[31] P. Yang, K. N. Liou. (1996). Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. Journal of the Optical Society of America A.13(10):2072-2085. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
文献评价指标
浏览 103次
下载全文 29次
评分次数 0次
用户评分 0.0分
分享 0次