首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2019 ,2019-01-14
Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration
Research Article
Suhua Liu 1 , 2 , 3 Hongbo Su 4 Renhua Zhang 3 Jing Tian 3 Shaohui Chen 3 Weimin Wang 5 Lijun Yang 5 Hong Liang 5
Show affiliations
DOI:10.1155/2019/6253832
Received 2018-04-21, accepted for publication 2018-12-03, Published 2018-12-03
PDF
摘要

Evapotranspiration (ET) is a significant component in the water cycle, and the estimation of it is imperative in water resource management. Regional ET can be derived by using remote sensing technology which combines remote sensing inputs with ground-based measurements. However, instantaneous ET values estimated through remote sensing directly need to be converted into daily totals. In this study, we attempted to retrieve daily ET from remotely sensed instantaneous ET. The study found that the Gaussian fitting curve closely followed the ET measurements during the daytime and hence put forward the Gaussian fitting method to convert the remotely sensed instantaneous ET into daily ETs. The method was applied to the middle reaches of Heihe River in China. Daily ETs on four days were derived and evaluated with ET measurements from the eddy covariance (EC) system. The correlation between daily ET estimates and measurements showed high accuracy, with a coefficient of determination (R2) of 0.82, a mean average error (MAE) of 0.41 mm, and a root mean square error (RMSE) of 0.46 mm. To make more scientific assessments, percent errors were calculated on the estimation accuracy, which ranged from 0% to 18%, with more than 80% of locations having the percent errors within 10%. Analyses on the relationship between daily ET estimates and land use status were also made to assess the Gaussian fitting method, and the results showed that the spatial distribution of daily ET estimates well demonstrated ET differences caused by land use types and was intimately linked with the vegetation pattern. The comparison between the Gaussian fitting method and the sine function method and the ETrF method indicated that results derived through the Gaussian fitting method had higher precision than that obtained by the sine function method and the ETrF method.

授权许可

Copyright © 2019 Suhua Liu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Hongbo Su.Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Florida, FL 33431, USA, fau.edu.hongbo@ieee.org
2. Jing Tian.Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, cas.cn.tianj.04b@igsnrr.ac.cn

推荐引用方式

Suhua Liu,Hongbo Su,Renhua Zhang,Jing Tian,Shaohui Chen,Weimin Wang,Lijun Yang,Hong Liang. Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration. Advances in Meteorology ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Z. Xu, S. Liu, X. Li. (2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research: Atmospheres.118(23):13,140-13,157. DOI: 10.1016/j.agrformet.2005.08.007.
[2] R. D. Jackson, J. L. Hatfield, R. J. Reginato, S. B. Idso. et al.(1983). Estimation of daily evapotranspiration from one time-of-day measurements. Agricultural Water Management.7(1–3):351-362. DOI: 10.1016/j.agrformet.2005.08.007.
[3] R. Trezza. (2002). Evapotranspiration Using a Satellite-Based Surface Energy Balance with Standardized Ground Control. DOI: 10.1016/j.agrformet.2005.08.007.
[4] Z. Kothavala, M. A. Arain, T. A. Black, D. Verseghy. et al.(2005). The simulation of energy, water vapor and carbon dioxide fluxes over common crops by the Canadian Land Surface Scheme (CLASS). Agricultural and Forest Meteorology.133(1–4):89-108. DOI: 10.1016/j.agrformet.2005.08.007.
[5] I. A. Walter, R. G. Allen, R. Elliott. ASCE’s standardized reference evapotranspiration equation. .40499:1-11. DOI: 10.1016/j.agrformet.2005.08.007.
[6] S. M. Liu, Z. W. Xu, W. Z. Wang. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences.15(4):1291-1306. DOI: 10.1016/j.agrformet.2005.08.007.
[7] A. N. French, F. Jacob, M. C. Anderson. (2005). Surface energy fluxes with the advanced spaceborne thermal emission and reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment.99(1-2):55-65. DOI: 10.1016/j.agrformet.2005.08.007.
[8] M. Tasumi, R. Trezza, R. G. Allen, J. L. Wright. et al.(2005). Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrigation and Drainage Systems.19(3-4):355-376. DOI: 10.1016/j.agrformet.2005.08.007.
[9] W. Shuttleworth, R. Gurney, A. Hsu, J. Ormsby. et al.(1989). Remote sensing and large-scale global processes. FIFE: the Variation in Energy Partition at Surface Flux Sites.186. DOI: 10.1016/j.agrformet.2005.08.007.
[10] Y.-A. Liou, S. Kar. (2014). Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—a review. Energies.7(5):2821-2849. DOI: 10.1016/j.agrformet.2005.08.007.
[11] G. Liu, M. Hafeez, Y. Liu, D. Xu. et al.(2012). A novel method to convert daytime evapotranspiration into daily evapotranspiration based on variable canopy resistance. Journal of Hydrology.414-415:278-283. DOI: 10.1016/j.agrformet.2005.08.007.
[12] E. T. Engman, R. J. Gurney. (1991). Remote Sensing in Hydrology. DOI: 10.1016/j.agrformet.2005.08.007.
[13] W. Abtew, A. Melesse. (2013). Evaporation and Evapotranspiration: Measurements and Estimations. DOI: 10.1016/j.agrformet.2005.08.007.
[14] K. Wang, R. E. Dickinson. (2012). A review of global terrestrial evapotranspiration: observation, modelling, climatology, and climatic variability. Reviews of Geophysics.50(2):1-54. DOI: 10.1016/j.agrformet.2005.08.007.
[15] S. Wang. (2008). Simulation of evapotranspiration and its response to plant water and CO transfer dynamics. Journal of Hydrometeorology.9(3):426-443. DOI: 10.1016/j.agrformet.2005.08.007.
[16] W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, A. A. M. Holtslag. et al.(1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology.212-213:198-212. DOI: 10.1016/j.agrformet.2005.08.007.
[17] R. L. Burden, J. D. Faires. (2001). Numerical Analysis. DOI: 10.1016/j.agrformet.2005.08.007.
[18] H. Li, D. Sun, Y. Yu. (2014). Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sensing of Environment.142:111-121. DOI: 10.1016/j.agrformet.2005.08.007.
[19] Y.-C. Wang, T.-Y. Chang, Y.-A. Liou. (2010). Terrain correction for increasing the evapotranspiration estimation accuracy in a mountainous watershed. IEEE Geoscience and Remote Sensing Letters.7(2):352-356. DOI: 10.1016/j.agrformet.2005.08.007.
[20] J. L. Chávez, C. M. U. Neale, J. H. Prueger, W. P. Kustas. et al.(2008). Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing et values. Irrigation Science.27(1):67-81. DOI: 10.1016/j.agrformet.2005.08.007.
[21] L. Zhang, R. Lemeur. (1995). Evaluation of daily evapotranspiration estimates from instantaneous measurements. Agricultural and Forest Meteorology.74(1-2):139-154. DOI: 10.1016/j.agrformet.2005.08.007.
[22] Q. Liu, J. Wen, S. Wu, Y. Qu. et al.(2014). Albedo Dataset in 30m-Resolution in the Heihe River Basin in 2012. DOI: 10.1016/j.agrformet.2005.08.007.
[23] X. Liu, Y. Bo. (2015). Object-based crop species classification based on the combination of airborne hyperspectral images and LiDAR data. Remote Sensing.7(1):922-950. DOI: 10.1016/j.agrformet.2005.08.007.
[24] E. Delogu, G. Boulet, A. Olioso. (2012). Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass. Hydrology and Earth System Sciences.16(8):2995-3010. DOI: 10.1016/j.agrformet.2005.08.007.
[25] P. J. Sellers, R. E. Dickinson, D. A. Randall. (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science.275(5299):502-509. DOI: 10.1016/j.agrformet.2005.08.007.
[26] X. Li, G. Cheng, S. Liu. (2013). Heihe watershed allied Telemetry experimental Research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society.94(8):1145-1160. DOI: 10.1016/j.agrformet.2005.08.007.
[27] C. Abdelghani, J. C. B. Hoedjes, J.-C. Rodriquez. (2008). Using remotely sensed data to estimate area-averaged daily surface fluxes over a semi-arid mixed agricultural land. Agricultural and Forest Meteorology.148(3):330-342. DOI: 10.1016/j.agrformet.2005.08.007.
[28] W. Brutsaert. (2005). Hydrology: An Introduction. DOI: 10.1016/j.agrformet.2005.08.007.
[29] C. H. B. Priestley, R. J. Taylor. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review.100(2):81-92. DOI: 10.1016/j.agrformet.2005.08.007.
[30] J. D. Kalma, T. R. McVicar, M. F. McCabe. (2008). Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics.29(4-5):421-469. DOI: 10.1016/j.agrformet.2005.08.007.
[31] Z. Su. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences.6(1):85-100. DOI: 10.1016/j.agrformet.2005.08.007.
[32] T. G. Van Niel, T. R. McVicar, M. L. Roderick, A. I. J. M. van Dijk. et al.(2011). Correcting for systematic error in satellite-derived latent heat flux due to assumptions in temporal scaling: assessment from flux tower observations. Journal of Hydrology.409(1-2):140-148. DOI: 10.1016/j.agrformet.2005.08.007.
[33] W. Kustas, M. Anderson. (2009). Advances in thermal infrared remote sensing for land surface modeling. Agricultural and Forest Meteorology.149(12):2071-2081. DOI: 10.1016/j.agrformet.2005.08.007.
[34] J. C. B. Hoedjes, A. Chehbouni, F. Jacob, J. Ezzahar. et al.(2008). Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. Journal of Hydrology.354(1–4):53-64. DOI: 10.1016/j.agrformet.2005.08.007.
[35] W. J. Shuttleworth. (2007). Putting the “vap” into evaporation. Hydrology and Earth System Sciences.11(1):210-244. DOI: 10.1016/j.agrformet.2005.08.007.
[36] L. Morillas, L. Villagarcía, F. Domingo, H. Nieto. et al.(2014). Environmental factors affecting the accuracy of surface fluxes from a two-source model in Mediterranean drylands: upscaling instantaneous to daytime estimates. Agricultural and Forest Meteorology.189-190:140-158. DOI: 10.1016/j.agrformet.2005.08.007.
[37] E. P. Glenn, A. R. Huete, P. L. Nagler, K. K. Hirschboeck. et al.(2007). Integrating remote sensing and ground methods to estimate evapotranspiration. Critical Reviews in Plant Sciences.26(3):139-168. DOI: 10.1016/j.agrformet.2005.08.007.
[38] T. Xu, S. Liu, L. Xu. (2015). Temporal upscaling and reconstruction of thermal remotely sensed instantaneous evapotranspiration. Remote Sensing.7(3):3400-3425. DOI: 10.1016/j.agrformet.2005.08.007.
[39] T. Xu, Z. Guo, S. Liu. (2018). Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. Journal of Geophysical Research: Atmospheres.123(16):8674-8690. DOI: 10.1016/j.agrformet.2005.08.007.
[40] S. Liu, H. Su, R. Zhang. A study on deriving daily evapotranspiration from remotely sensed instantaneous evapotranspiration based on the Gaussian fitting method. :1923-1926. DOI: 10.1016/j.agrformet.2005.08.007.
[41] M. Sugita, W. Brutsaert. (1991). Daily evaporation over a region from lower boundary-layer profiles measured with radiosondes. Water Resources Research.27(5):747-752. DOI: 10.1016/j.agrformet.2005.08.007.
[42] S. Liu, Z. Xu, L. Song. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology.230-231:97-113. DOI: 10.1016/j.agrformet.2005.08.007.
[43] F. Maselli, D. Papale, M. Chiesi. (2014). Operational monitoring of daily evapotranspiration by the combination of MODIS NDVI and ground meteorological data: application and evaluation in Central Italy. Remote Sensing of Environment.152:279-290. DOI: 10.1016/j.agrformet.2005.08.007.
[44] M. Anderson, J. Norman, W. Kustas, R. Houborg. et al.(2008). A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment.112(12):4227-4241. DOI: 10.1016/j.agrformet.2005.08.007.
[45] S. Liu, X. Li, Z. Xu. (2018). The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone Journal.17(1). DOI: 10.1016/j.agrformet.2005.08.007.
[46] R. Tang, Z.-L. Li, X. Sun. (2013). Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sensing of Environment.138:102-118. DOI: 10.1016/j.agrformet.2005.08.007.
文献评价指标
浏览 73次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次