首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-01-17
Energy Consumption Analysis of Frozen Sandy Soil and an Improved Double Yield Surface Elastoplastic Model considering the Particle Breakage
Research Article
Junlin He 1 Zhanyuan Zhu 1 Fei Luo 1 , 2 Yuanze Zhang 1 Zuyin Zou 1
Show affiliations
DOI:10.1155/2019/9716748
Received 2018-07-05, accepted for publication 2018-12-02, Published 2018-12-02
PDF
摘要

The stress-strain relationship of frozen soil is a hot research topic in the field of frozen soil mechanics. In order to study the effect of particle crushing on the stress-strain relationship, a series of triaxial compression tests for frozen sandy soil are performed under confining pressures from 1 to 8 MPa at the temperatures of −3 and −5°C, and the energy consumption caused by particle breakage is analyzed during the triaxial shear process based on the energy principle. It is found that the energy consumption caused by the particle breakage presents a hyperbolic trend with axial strain. In view of the obvious advantages of the double yield surface elastoplastic model in describing soil dilatancy, stress path effect, and stress history influence, a modified double yield surface elastoplastic model for frozen sandy soil is proposed based on the energy principle. The validity of the model is verified by comparing its modeling results with test results. As a result, it is found that the stress-strain curves predicted by this model agree well with the corresponding experimental results under different confining pressures and temperatures.

授权许可

Copyright © 2019 Junlin He et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zhanyuan Zhu.College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China, sicau.edu.cn.252514862@qq.com

推荐引用方式

Junlin He,Zhanyuan Zhu,Fei Luo,Yuanze Zhang,Zuyin Zou. Energy Consumption Analysis of Frozen Sandy Soil and an Improved Double Yield Surface Elastoplastic Model considering the Particle Breakage. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] L. Ma, J. L. Qi, Y. fan. (2015). Particle crushing of frozen sand under triaxial compression. Chinese Journal of Geotechnical Engineering.37(3):544-550. DOI: 10.2307/1552227.
[2] W. Ma, D. Wang. (2012). Studies on frozen soil mechanics in China in past 50 years and their prospect. Chinese Journal of Geotechnical Engineering.34(4):625-640. DOI: 10.2307/1552227.
[3] T. Fukumoto. (2008). Particle breakage characteristics of granular soils. Soils and Foundations.32(1):26-40. DOI: 10.2307/1552227.
[4] M. A. Elsohby. (1969). Elastic behavior of sand. Proceedings of ASCE.95. DOI: 10.2307/1552227.
[5] R. Wang, J. Sun. (2002). Damage slip coupling analysis of undrained characters of calcareous sand. Journal of Hydraulic Engineering.33(7):75-78. DOI: 10.2307/1552227.
[6] B. Indraratna, W. Salim. (2002). Modeling of particle breakage of coarse aggregates incorporating strength and dilatancy. Proceedings of the Institution of Civil Engineers—Geotechnical Engineering.155(4):243-252. DOI: 10.2307/1552227.
[7] M. Jin, Z. Qu. (1989). Stress-strain behaviour of glacial till under high confining pressure. Journal of Sichuan University: Engineering Science Edition(1):17-22. DOI: 10.2307/1552227.
[8] Z. Li. (2007). Constitutive Model for Coarse Granular Soil Incorporating Particle Breakage. DOI: 10.2307/1552227.
[9] S. Chi, Y. Jia. (2005). Correction of the energy Rowe’s stress-dilatancy model modified for energy dissipation of particle breakage. Chinese Journal of Geotechnical Engineering.27(11):1266-1269. DOI: 10.2307/1552227.
[10] P. A. Vemeer. (1978). A double hardening model for sand. Geotechnique.28(4):413-433. DOI: 10.2307/1552227.
[11] E. Guyon, J.-P. Troadec. (1994). Du Sac de Billes au tas De Sable. DOI: 10.2307/1552227.
[12] T. J. Zhang, M. A. Parsons, R. G. Barry. Statistic of global permafrost distribution. :7-8. DOI: 10.2307/1552227.
[13] Y. Zheng, W. Ma, B. Hui. (2015). Impact of freezing and thawing cycles on the structures of soil and a quantitative approach. Journal of Glaciology and Geocryology.37(1):132-137. DOI: 10.2307/1552227.
[14] Z. Z. A. Yin. Constitutive model with two yield surfaces for soils. .1-3. DOI: 10.2307/1552227.
[15] X. Wang, Z. Zhang. (2000). Engneering in cold region and mechanics of frozen-thawymedia. Earth Science Frontiers.7(B08):99-104. DOI: 10.2307/1552227.
[16] C. Chavez, E. E. Alonso. (2008). A constitutive model for crushed granular aggregates which includes suction effects. Soils and Foundations.43(4):215-227. DOI: 10.2307/1552227.
[17] W. Ma, Z. Wu. (1995). Analysis of microstructural changes in frozen sandy soil under confining pressures using scaning electronic microscop. Journal of Glaciology and Geocaryology.17(2):152-158. DOI: 10.2307/1552227.
[18] T. Zhang, Z. Youwu, G. Dongxin, Q. Guoqing. et al.(2001). Geocryology in China. Arctic, Antarctic, and Alpine Research.33(2):245. DOI: 10.2307/1552227.
[19] M. Hassanlourad, H. Salehzadeh, H. Shahnazari. (2008). Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects. Cytometry Part A the Journal of the International Society for Analytical Cytology.6(2):108-119. DOI: 10.2307/1552227.
[20] R. J. Marsal. (1967). Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division.94:1042-1047. DOI: 10.2307/1552227.
[21] S. Nemat-Nasser, A. Shokooh. (1979). A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing. Canadian Geotechnical Journal.16(4):659-678. DOI: 10.2307/1552227.
[22] K. H. Roscoe. (1968). On the generalised stress-strain behaviour of wet clay. Engineering Plasticity:535-609. DOI: 10.2307/1552227.
[23] P. V. Lade. (1977). Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. International Journal of Solids and Structures.13(11):1019-1035. DOI: 10.2307/1552227.
[24] Y. Yang, Y. Lai, S. Li. (2010). Experimental study of deformation failure and energy properties of frozen silt under triaxial compression. Rock and Soil Mechanics.31(11):3505-3510. DOI: 10.2307/1552227.
[25] G. H. Brown. (1998). The periglacial environment (second edition). Applied Geochemistry.13(2):281-282. DOI: 10.2307/1552227.
[26] K. L. Lee. (1967). Drained strength characteristics of sands. Journal of the Soil Mechanics and Foundation Division.93(6):117-141. DOI: 10.2307/1552227.
[27] M. F. Ishac, A. C. Heidebrecht. (1982). Energy dissipation and seismic liquefaction in sands. Earthquake Engineering and Structural Dynamics.10(1):59-68. DOI: 10.2307/1552227.
[28] A. S. Vesic, G. W. Clough. (1968). Behavior of granular material under high stress. ASCE Journal of the Soil Mechanics and Foundations Division.94(SM3):661-688. DOI: 10.2307/1552227.
[29] M. Zhankuan, G. Li, T. Chen. (2007). Constitutive model for rockfill material considering grain crushing. Chinese Journal of Geotechnical Engineering.29(12):1865-1869. DOI: 10.2307/1552227.
[30] N. Miura, S. O-Hara, S. O-Hara. (1979). Particle-crushing of a decomposed granite soil under shear stresses. Soils and Foundations.19(3):1-14. DOI: 10.2307/1552227.
[31] M. Zhankuan, G. Li, S. Chen. (2012). Constitutive model for coarse granular materials based on breakage energy. Chinese Journal of Geotechnical Engineering.34(10):1801-1811. DOI: 10.2307/1552227.
[32] T.-S. Ueng, T.-J. Chen. (2000). Energy aspects of particle breakage in drained shear of sands. Géotechnique.50(1):65-72. DOI: 10.2307/1552227.
[33] P. W. Rowe. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.269(1339):500-527. DOI: 10.2307/1552227.
[34] B. Zhang, Y. Jia, Z. Zhang. (2007). Modified Rowe’s dilatancy law of rockfill and Shen Zhujiang’s double yield surfaces elastoplastic model. Chinese Journal of Geotechnical Engineering.29(10):1443-1448. DOI: 10.2307/1552227.
[35] G. Luo, J. Zhang. (2004). Improvement of Duncan-Chang nonlinear model and Shen Zhujiang’s elastoplastic model for granular soils. Rock and Soil Mechanics.25(6):887-890. DOI: 10.2307/1552227.
[36] T. Wang, S. Chen, Z. Fu. (2016). Two modifications to the shen Zhujiang’s double yield surface model. Journal of Tongji University(Natural Science).44(3):362-368. DOI: 10.2307/1552227.
[37] Q. Guo. (1987). Experimental study on shear strength characteristics of coarse-grained soil. Journal of Hydraulic Engineering(5):61-67. DOI: 10.2307/1552227.
[38] K. T. Law, Y. L. Cao, G. N. He. (1990). An energy approach for assessing seismic liquefaction potential. Canadian Geotechnical Journal.27(3):320-329. DOI: 10.2307/1552227.
[39] K. H. Roscoe, A. N. Schofield, A. Thurairajah. (1963). Yielding of clays in states wetter than critical. Géotechnique.13(3):211-240. DOI: 10.2307/1552227.
[40] Z. Shen. “Nanshui” double yield surface model and its application. . DOI: 10.2307/1552227.
文献评价指标
浏览 28次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 0次