首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-01-16
Experimental Study of the Pore Structure Deterioration of Sandstones under Freeze-Thaw Cycles and Chemical Erosion
Research Article
Jielin Li 1 , 2 , 3 Rennie B. Kaunda 2 Longyin Zhu 1 , 3 Keping Zhou 1 , 3 Feng Gao 1 , 3
Show affiliations
DOI:10.1155/2019/9687843
Received 2018-08-04, accepted for publication 2018-12-16, Published 2018-12-16
PDF
摘要

The issue of rock deterioration in chemical environments has drawn much attention in recent years in the rock engineering community. In this study, a series of 30 freeze-thaw cycling tests are conducted on sandstone samples soaked in H2SO4 solution and in pure water, prior to the application of nuclear magnetic resonance (NMR) on the rock specimens. The porosity of the sandstone, the distribution of transverse relaxation time T2, and the NMR images are acquired after each freeze-thaw cycle. The pore size distribution curves of the sandstone after freeze-thaw cycles, four categories of pore scale, and the features of freeze-thaw deterioration for pores of different sizes in H2SO4 solution and pure water are established. The result shows that, with the influence of the acid environment and the freeze-thaw cycles, the mass of the samples largely deteriorates. As the freeze-thaw cycles increase, the porosity of rocks increases approximately linearly. The distribution of the NMR T2 develops gradually from 4 peaks to 5 or even to 6. Magnetic resonance imaging (MRI) dynamically displays the process of the freeze-thaw deterioration of the microstructure inside the sandstones under acid conditions. The results also show pore expansion in rocks under the coupling effects of chemistry and the freeze-thaw cycles, which differ largely from the freeze-thaw deterioration of the rock specimens placed in pure water.

授权许可

Copyright © 2019 Jielin Li et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jielin Li.School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China, csu.edu.cn;Department of Mining Engineering, Colorado School of Mines, 1600 Illinois Street, Golden, Colorado 80401, USA, mines.edu;Research Center for Mining Engineering and Technology in Cold Regions, Central South University, Changsha 410083, China, csu.edu.cn.lijielin@163.com

推荐引用方式

Jielin Li,Rennie B. Kaunda,Longyin Zhu,Keping Zhou,Feng Gao. Experimental Study of the Pore Structure Deterioration of Sandstones under Freeze-Thaw Cycles and Chemical Erosion. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. P. Yan, D. N. Wen, Z. Z. Li. (2016). The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance (NMR) logging: a case study of Es formation in the south slope of dongying sag. Chinese Journal of Geophysics.59(3):313-322. DOI: 10.1016/0040-1951(81)90157-8.
[2] J. L. Li. (2012). Experiment study on deterioration mechanism of rock under the conditions of freezing-thawing cycles in cold regions based on NMR technology. . DOI: 10.1016/0040-1951(81)90157-8.
[3] H. Y. Yao, X. T. Feng, Q. Cui. (2009). Meso-mechanical experimental study of meso-fraeturing process of limestone under coupled chemical corrosion and water pressure. Rock and Soil Mechanics.30(1):59-78. DOI: 10.1016/0040-1951(81)90157-8.
[4] F. Gao, Q. Wang, H. Deng, J. Zhang. et al.(2016). Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone. Bulletin of Engineering Geology and the Environment.76(4):1481-1490. DOI: 10.1016/0040-1951(81)90157-8.
[5] W. Z. Shao, J. Y. Xie, X. R. Chi. (2013). On the relation of porosity and permeability in low porosity and low permeability rock. Well Logging Technology.37(2):149-153. DOI: 10.1016/0040-1951(81)90157-8.
[6] K.-B. Min, J. Rutqvist, D. Elsworth. (2009). Chemically and mechanically mediated influences on the transport and mechanical characteristics of rock fractures. International Journal of Rock Mechanics and Mining Sciences.46(1):80-89. DOI: 10.1016/0040-1951(81)90157-8.
[7] T. L. Han, Y. S. Chen, J. P. Shi. (2013). Experimental study of mechanical characteristics of sandstone subjected to hydrochemical erosion. Chinese Journal of Rock Mechanics and Engineering.32(13):146-159. DOI: 10.1016/0040-1951(81)90157-8.
[8] . DOI: 10.1016/0040-1951(81)90157-8.
[9] H. Zheng, X.-T. Feng, P.-Z. Pan. (2015). Experimental investigation of sandstone properties under CO–NaCl solution-rock interactions. International Journal of Greenhouse Gas Control.37:451-470. DOI: 10.1016/0040-1951(81)90157-8.
[10] Suzhou Niumag Electronic Technology Co., Ltd.. (2013). NMR Rock-Core Analyzing Software Manual (Version 1.1.0). DOI: 10.1016/0040-1951(81)90157-8.
[11] K. R. Brownstein, C. E. Tarr. (1979). Importance of classical diffusion in NMR studies of water in biological cells. Physical Review A.19(6):2446-2453. DOI: 10.1016/0040-1951(81)90157-8.
[12] M. Hori, H. Morihiro. (1998). Micromechanical analysis of deterioration due to freezing and thawing in porous brittle materials. International Journal of Engineering Science.36(4):511-522. DOI: 10.1016/0040-1951(81)90157-8.
[13] W. X. Ding, X. T. Feng. (2008). CT experimental research of fractured rock failure process under chemical corrosion and permeation. Chinese Journal of Rock Mechanics and Engineering.27(9):1865-1873. DOI: 10.1016/0040-1951(81)90157-8.
[14] R. L. Kleinberg, W. E. Kenyon, P. P. Mitra. (1994). Mechanism of NMR relaxation of fluids in rock. Journal of Magnetic Resonance.108(2):206-214. DOI: 10.1016/0040-1951(81)90157-8.
[15] C. H. Lyu, Z. H. Ning, Q. Wang, M. Chen. et al.(2018). Application of NMR to pore size distribution and movable fluid distribution in tight sandstones. Energy Fuels.32(2):1395-1405. DOI: 10.1016/0040-1951(81)90157-8.
[16] Y. S. Liu, W. Liu, X. Y. Dong. (2015). Dynamic mechanical properties and constitutive model of rock under chemical corrosion. Journal of Yangtze River Scientific Research Institute.32(5):72-75. DOI: 10.1016/0040-1951(81)90157-8.
[17] B. Gou, J. C. Guo, T. Yu. (2015). New method for calculating rock fracture pressure by acid damage. Journal of Central South University (Science and Technology).46(1):275-281. DOI: 10.1016/0040-1951(81)90157-8.
[18] S. Miao, M. Cai, Q. Guo, P. Wang. et al.(2016). Damage effects and mechanisms in granite treated with acidic chemical solutions. International Journal of Rock Mechanics and Mining Sciences.88:77-86. DOI: 10.1016/0040-1951(81)90157-8.
[19] M. A. Mahmoud, H. A. Nasr-El-Din, C. A. DeWolf. Sandstone acidizing using a new class of chelating agents. :1-17. DOI: 10.1016/0040-1951(81)90157-8.
[20] H. B. Li, J. Y. Zhu, H. K. Guo. (2008). Methods for calculating pore radius distribution in rock from NMR spectra. Chinese Journal of Magnetic Resonance.25:273-280. DOI: 10.1016/0040-1951(81)90157-8.
[21] X. M. Ge, Y. R. Fan, X. J. Zhu, Y. Chen. et al.(2015). Determination of nuclear magnetic resonance cutoff value based on multifractal theory—an application in sandstone with complex pore structure. Geophysics.80(1):11-21. DOI: 10.1016/0040-1951(81)90157-8.
[22] P. Vazquez, L. Carrizo, C. Thomachot-Schneider, S. Gibeaux. et al.(2016). Influence of surface finish and composition on the deterioration of building stones exposed to acid atmospheres. Construction and Building Materials.106:392-403. DOI: 10.1016/0040-1951(81)90157-8.
[23] B. K. Atkinson, P. G. Meredith. (1981). Stress corrosion cracking of quartz: a note on the influence of chemical environment. Ectonophysics.77(1-2):1-11. DOI: 10.1016/0040-1951(81)90157-8.
[24] I. C. McDowall. (1960). Particle size reduction of clay minerals by freezing and thawing. New Zealand Journal of Geology and Geophysics.3(3):337-343. DOI: 10.1016/0040-1951(81)90157-8.
[25] B. K. Ning, S. L. Chen, Q. Zhang. (2005). Double corrosion effects under acid and freezing and thawing erosion and fracture behavior of concrete. Journal of Shenyang University of Technology.27(5):575-578. DOI: 10.1016/0040-1951(81)90157-8.
[26] R. L. Kleinberg. (1996). Utility of NMR distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter rho 2. Magnetic Resonance Imaging.14(7-8):761-767. DOI: 10.1016/0040-1951(81)90157-8.
[27] R. H. Brzesowsky, S. J. T. Hangx, N. Brantut, C. J. Spiers. et al.(2014). Compaction creep of sands due to time-dependent grain failure: effects of chemical environment, applied stress, and grain size. Journal of Geophysical Research Solid Earth.119(10):7521-7541. DOI: 10.1016/0040-1951(81)90157-8.
[28] S. L. Chen, X. T. Feng, H. Zhou. (2004). Study on triaxial meso-failure mechanism and damage variables of sandstone under chemical erosion. Rock and Soil Mechanics.25(9):1363-1367. DOI: 10.1016/0040-1951(81)90157-8.
[29] N. Li, Y. Zhu, B. Su, S. Gunter. et al.(2003). A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics and Mining Sciences.40(2):243-249. DOI: 10.1016/0040-1951(81)90157-8.
[30] L. J. Feucht, J. M. Logan. (1990). Effects of chemically active solutions on shearing behavior of a sandstone. Tectonophysics.175(1–3):159-176. DOI: 10.1016/0040-1951(81)90157-8.
[31] T. Ishikawa, S. Miura. (2011). Influence of freeze-thaw action on deformation-strength characteristics and particle crushability of volcanic coarse-grained soils. Soils and Foundations.51(5):785-799. DOI: 10.1016/0040-1951(81)90157-8.
[32] W. G. Tian. (2013). Experiment study on freezing-thawing damage mechanism of rock under the condition of Coupling of multiple factors. . DOI: 10.1016/0040-1951(81)90157-8.
[33] X. Shi, L. Fay, M. M. Peterson, Z. Yang. et al.(2009). Freeze-thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers. Materials and Structures.43(7):933-946. DOI: 10.1016/0040-1951(81)90157-8.
[34] P. J. M. Monteiro, S. J. Bastacky, T. L. Hayes. (1985). Low-temperature scanning electron microscope analysis of the Portland cement paste early hydration. Cement and Concrete Research.15(4):687-693. DOI: 10.1016/0040-1951(81)90157-8.
[35] L. H. Lu, S. L. Chen, B. K. Ning. (2006). Test study on concrete mechanical effect under together work of chemistry and frost and thaw torrosion. Highway.51(8):154-158. DOI: 10.1016/0040-1951(81)90157-8.
[36] P. Li, J. Liu, G. H. Li, J. B. Zhu. et al.(2011). Experimental study for shear strength characteristics of sandstone under water-rock interaction effects. Rock and Soil Mechanics.32(2):380-386. DOI: 10.1016/0040-1951(81)90157-8.
[37] H. Zhou, F. Gao, X. Zhou. (2013). The translation research of different types sandstone of Yungang Grottoes in NMR -mercury capillary pressure. Progress in Geophys.28(5):2759-2766. DOI: 10.1016/0040-1951(81)90157-8.
[38] W. X. Ding, X. T. Feng. (2009). Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion. Chinese Journal of Geotechnical Engineering.31(6):899-904. DOI: 10.1016/0040-1951(81)90157-8.
[39] L. Z. Xiao. (1998). Magnetic Resonance Imaging Well Logging and Rock Magnetic Resonance and Its Applications. DOI: 10.1016/0040-1951(81)90157-8.
文献评价指标
浏览 24次
下载全文 10次
评分次数 0次
用户评分 0.0分
分享 0次