首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-01-15
Experimental Investigation on the Effect of Steel Fibers on the Flexural Behavior and Ductility of High-Strength Concrete Hollow Beams
Research Article
Ahmmad Abbass 1 , 2 Sallal Abid 3 Mustafa Özakça 1
Show affiliations
DOI:10.1155/2019/8390345
Received 2018-10-04, accepted for publication 2018-12-11, Published 2018-12-11
PDF
摘要

In this study, an experimental work was directed toward comparing the flexural behavior of solid and hollow steel fiber-reinforced concrete beams. For this purpose, eight square cross-sectional beam specimens, four solid and four hollow, were prepared. One concrete mixture with four different steel fiber contents of 0, 0.5, 1.0, and 1.5% were used. The side length of the central square hole was 80 mm, whereas the cross-sectional side length was 150 mm. All beams were tested under four-point monotonic loading until failure. In addition to the solid and hollow beams, cylinders were cast to evaluate the compressive strength, splitting tensile strength, and modulus of elasticity, whereas prisms were used to conduct the fracture test. The test results showed that all fibrous beams failed in flexure, whereas those without fiber exhibited flexural-shear failure. In general, the flexural behavior of fibrous-beams was superior to that of beams without fiber. The hollow beams with fiber contents of 0, 0.5, and 1.0% were observed to withstand lower loads at cracking, yielding, and peak stages compared with their corresponding solid beams; this was not the case for the 1.5% fiber hollow beam, which exhibited a higher peak load than its corresponding solid beam. Although all eight beams exhibited ductility indices higher than 3.7, hollow beams exhibited better ductility than solid beams, showing higher ductility index values.

授权许可

Copyright © 2019 Ahmmad Abbass et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Sallal Abid.Department of Civil Engineering, Wasit University, Kut, Iraq, uowasit.edu.iq.sallal@uowasit.edu.iq

推荐引用方式

Ahmmad Abbass,Sallal Abid,Mustafa Özakça. Experimental Investigation on the Effect of Steel Fibers on the Flexural Behavior and Ductility of High-Strength Concrete Hollow Beams. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. A. Ashour, F. F. Wafa, M. I. Kamal. (2000). Effect of the concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibrous concrete beams. Engineering Structures.22(9):1145-1158. DOI: 10.1016/j.conbuildmat.2004.04.027.
[2] M. Sun, J. Zhu, N. Li, C. C. Fu. et al.(2017). Experimental research and finite element anaysis on mechanical property of SFRC T-beam. Advances in Civil Engineering.2017-8. DOI: 10.1016/j.conbuildmat.2004.04.027.
[3] J. Katzer. (2013). Strength performance comparison of mortars made with waste fine aggregate and ceramic fume. Construction and Building Materials.47:1-6. DOI: 10.1016/j.conbuildmat.2004.04.027.
[4] G. N. J. Kani. (1964). The riddle of shear failure and its solution. Journal of the American Concrete Institute.61(28):441-467. DOI: 10.1016/j.conbuildmat.2004.04.027.
[5] J. P. Zhang, L. M. Liu, Z. D. Zhu, F. T. Zhang. et al.(2018). Flexural fracture toughness and first-crack strength tests of steel fiber-silica fume concrete and its engineering applications. Strength of Materials.50(1):166-175. DOI: 10.1016/j.conbuildmat.2004.04.027.
[6] R. Park. Ductility evaluation from laboratory and analytical testing. :605-616. DOI: 10.1016/j.conbuildmat.2004.04.027.
[7] H.-L. Zhang, C.-C. Pei. (2017). Flexural properties of steel fiber types and reinforcement ratio for high-strength recycled concrete beams. Advances in Structural Engineering.20(10):1512-1522. DOI: 10.1016/j.conbuildmat.2004.04.027.
[8] ACI Committee 544. (1988). Design Considerations for Steel Fiber Reinforced Concrete: Manual of Concrete Practice. DOI: 10.1016/j.conbuildmat.2004.04.027.
[9] ASTM C1609-12. (2012). Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading. DOI: 10.1016/j.conbuildmat.2004.04.027.
[10] J. Katzer. (2012). Median diameter as a grading characteristic for fine aggregate cement composite designing. Construction and Building Materials.35:884-887. DOI: 10.1016/j.conbuildmat.2004.04.027.
[11] F. Altun, T. Haktanir, K. Ari. (2006). Experimental investigation of steel fiber reinforced concrete box beams under bending. Materials and Structures.39(4):491-499. DOI: 10.1016/j.conbuildmat.2004.04.027.
[12] J. Katzer, J. Domski. (2012). Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials.34:243-248. DOI: 10.1016/j.conbuildmat.2004.04.027.
[13] ASTM C1018-97. (1997). Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). DOI: 10.1016/j.conbuildmat.2004.04.027.
[14] S. Jang, H. Yun. (2018). Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Composite Structures.185:203-211. DOI: 10.1016/j.conbuildmat.2004.04.027.
[15] S. R. Abid, A. H. Nahhab, H. K. Al-aayedi, A. M. Nuhair. et al.(2018). Expansion and strength properties of concrete containing contaminated recycled concrete aggregate. Case Studies in Construction Materials.9:1-14. DOI: 10.1016/j.conbuildmat.2004.04.027.
[16] B. Li, L. Xu, Y. Shi, Y. Chi. et al.(2018). Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete. Construction and Building Materials.181:474-486. DOI: 10.1016/j.conbuildmat.2004.04.027.
[17] W. Abbass, M. I. Khan, S. Mourad. (2018). Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and Building Materials.168:556-569. DOI: 10.1016/j.conbuildmat.2004.04.027.
[18] L. F. A. Bernardo, S. M. R. Lopes. (2004). Neutral axis depth versus flexural ductility in high-strength concrete beams. Journal of Structural Engineering.130(3):452-459. DOI: 10.1016/j.conbuildmat.2004.04.027.
[19] J. Qi, J. Wang, Z. J. Ma. (2018). Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: experimental and theory. Structural Concrete.19(3):719-734. DOI: 10.1016/j.conbuildmat.2004.04.027.
[20] H. J. Pam, A. K. H. Kwan, M. S. Islam. (2001). Flexural strength and ductility of reinforced normal-and high-strength concrete beams. Structures.146(4):381-389. DOI: 10.1016/j.conbuildmat.2004.04.027.
[21] M. Sahmaran, I. O. Yaman. (2007). Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash. Construction and Building Materials.21(1):150-156. DOI: 10.1016/j.conbuildmat.2004.04.027.
[22] I.-H. Yang, C. Joh, K.-C. Kim. (2018). A comparative experimental study on flexural behavior of high-strength fiber-reinforced concrete and high-strength concrete beams. Advances in Material Science and Engineering.2018-13. DOI: 10.1016/j.conbuildmat.2004.04.027.
[23] A. Murugesan, A. Narayanan. (2018). Deflection of reinforced concrete beams with longitudinal circular hole. Practice Periodical on Structural Design and Construction.23(1):1-15. DOI: 10.1016/j.conbuildmat.2004.04.027.
[24] ASTM C1399-10. (2010). Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced. DOI: 10.1016/j.conbuildmat.2004.04.027.
[25] A. Conforti, G. Tiberti, G. A. Plizzari. (2016). Splitting and crushing failure in FRC elements subjected to a high concentrated load. Composites Part B: Engineering.105:82-92. DOI: 10.1016/j.conbuildmat.2004.04.027.
[26] F. H. Arna’ot, A. A. Abbass, A. A. Abualtemen, S. R. Abid. et al.(2017). Residual strength of high strength concentric column-SFRC flat plate exposed to high temperatures. Construction and Building Materials.154:204-218. DOI: 10.1016/j.conbuildmat.2004.04.027.
[27] A. Venkateshwaran, K. H. Tan, Y. Li. (2017). Residual flexural strengths of steel fiber reinforced concrete with multiple hooked-end fibers. Structural Concrete.19(2):352-365. DOI: 10.1016/j.conbuildmat.2004.04.027.
[28] S.-W. Shin, H. Kang, J.-M. Ahn, D.-W. Kim. et al.(2010). Flexural capacity of singly reinforced beam with 150 MPa ultra high-strength concrete. Indian Journal of Engineering and Material Sciences.17:414-426. DOI: 10.1016/j.conbuildmat.2004.04.027.
[29] RILEM TC-50 FMC Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams. Materials & Structures.18(4):287-290. DOI: 10.1016/j.conbuildmat.2004.04.027.
[30] V. Savino, L. Lanzoni, A. M. Tarantino, M. Viviani. et al.(2017). Simple and effective models to predict the compressive and tensile strength of HPFRC as the steel fiber content and type changes. Composites, Part B: Engineering.137:153-162. DOI: 10.1016/j.conbuildmat.2004.04.027.
[31] B. W. Xu, H. S. Shi. (2009). Correlations among mechanical properties of steel fiber reinforced concrete. Construction and Building Materials.23(12):3468-3474. DOI: 10.1016/j.conbuildmat.2004.04.027.
[32] M. Nili, V. Afroughsabet. (2010). Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering.37(8):879-886. DOI: 10.1016/j.conbuildmat.2004.04.027.
[33] X. H. Wang, S. Jacobsen, S. F. Lee, J. Y. He. et al.(2010). Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar. Materials and Structures.43(1-2):125-139. DOI: 10.1016/j.conbuildmat.2004.04.027.
[34] A. Murugesan, A. Narayanan. (2017). Influence of a longitudinal circular hole on flexural strength of reinforced concrete beams. Practice Periodical on Structural Design and Construction.22(2):1-10. DOI: 10.1016/j.conbuildmat.2004.04.027.
[35] J. Thomas, A. Ramaswamy. (2007). Mechanical properties of steel fiber-reinforced concrete. Journal of Materials in Civil Engineering.19(5):385-392. DOI: 10.1016/j.conbuildmat.2004.04.027.
[36] D. Al-Ghamdy, J. Wight, E. Tons. (1994). Flexural toughness of steel fiber reinforced concrete. Journal of King Abdulaziz University-Engineering Sciences.6(1):81-97. DOI: 10.1016/j.conbuildmat.2004.04.027.
[37] F. B. A. Beshara, I. G. Shaaban, T. S. Mustafa. (2012). Nominal flexural strength of high strength fiber reinforced concrete beams. Arabian Journal for Science and Engineering.37(2):291-301. DOI: 10.1016/j.conbuildmat.2004.04.027.
[38] R. B. Abdul-Ahad, O. Q. Aziz. (1999). Flexural strength of reinforced concrete T-beams with steel fibers. Cement and Concrete Composites.21(4):263-268. DOI: 10.1016/j.conbuildmat.2004.04.027.
[39] D.-Y. Yoo, N. Banthia, J.-M. Yang, Y.-S. Yoon. et al.(2016). Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials.121:676-685. DOI: 10.1016/j.conbuildmat.2004.04.027.
[40] D.-Y. Yoo, Y.-S. Yoon, N. Banthia. (2015). Flexural response of steel fiber reinforced concrete beams: effect of strength, fiber content, and strain rate. Cement and Concrete Composites.64:84-92. DOI: 10.1016/j.conbuildmat.2004.04.027.
[41] D.-Y. Yoo, Y.-S. Yoon, N. Banthia. (2015). Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams. Construction and Building Materials.93:477-485. DOI: 10.1016/j.conbuildmat.2004.04.027.
[42] R. V. Balendran, F. P. Zhou, A. Nadeem, A. Y. T. Leung. et al.(2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Building and Environment.37(12):1361-1367. DOI: 10.1016/j.conbuildmat.2004.04.027.
[43] F. F. Wafa, S. A. Ashour. (1992). Mechanical properties of high-strength fiber reinforced concrete. ACI Material Journal.89(5):449-454. DOI: 10.1016/j.conbuildmat.2004.04.027.
[44] M. Pajak, T. Ponikiewski. (2013). Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building materials.47:397-408. DOI: 10.1016/j.conbuildmat.2004.04.027.
[45] P. S. Song, S. Hwang. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials.18(9):669-673. DOI: 10.1016/j.conbuildmat.2004.04.027.
文献评价指标
浏览 1次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次