首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2019 ,2019-01-06
A Method of Enhancing Fast Steering Mirror’s Ability of Anti-Disturbance Based on Adaptive Robust Control
Research Article
Shitao Zhang 1 , 2 Bao Zhang 1 Xiantao Li 1 Zhengxi Wang 1 , 2 Feng Qian 1
Show affiliations
DOI:10.1155/2019/2152858
Received 2018-04-27, accepted for publication 2018-12-23, Published 2018-12-23
PDF
摘要

Fast steering mirror (FSM) plays a crucial role in stabilization of the line-of-sight (LOS) and phase shift compensation. The control accuracy of the FSM is affected by various disturbances especially the vibration in the aviation environment. Traditional anti-disturbance methods, such as disturbance observer (DOB), have a little effect of suppressing disturbance in FSM. But it also brings some problem, such as increasing mass and amplifying high frequency noise. To solve these problems, an anti-disturbance strategy based on adaptive robust control (ARC) was proposed. And it will not amplify the high-frequency noise which is inevitable in DOB. Experimental results show that, using adaptive robust controller, the steady-state error of the FSM decreased 4.8 times compared to simple PID control and 1.9 times compared to DOB+PID control in the simulated vibration environment.

授权许可

Copyright © 2019 Shitao Zhang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Bao Zhang.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, #3888 Dongnanhu Road, Changchun 130033, China, cas.cn.zhangb@ciomp.ac.cn

推荐引用方式

Shitao Zhang,Bao Zhang,Xiantao Li,Zhengxi Wang,Feng Qian. A Method of Enhancing Fast Steering Mirror’s Ability of Anti-Disturbance Based on Adaptive Robust Control. Mathematical Problems in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] L. R. Hedding. Fast steering mirror design and performance for stabilization and single axis scanning. :2. DOI: 10.1109/COASE.2010.5584424.
[2] T. Egami, T. Tsuchiya. (1995). Disturbance suppression control with preview action of linear DC brushless motor. IEEE Transactions on Industrial Electronics.42(5):494-500. DOI: 10.1109/COASE.2010.5584424.
[3] Y. Bin. (1996). Adaptive Robust Control of Nonlinear Systems with Application to Control of Mechanical Systems, Doctor of Philosophy dissertation, Mechanical Engineering [Phd. thesis]. DOI: 10.1109/COASE.2010.5584424.
[4] K. D. Young, V. I. Utkin, U. Ozguner. A control engineer's guide to sliding mode control. .27:1-14. DOI: 10.1109/COASE.2010.5584424.
[5] B. Yao, M. Tomizuka. (1997). Adaptive Robust Control of Non linear Systems: Effective Use of Information. IFAC Proceedings Volumes.30(11):873-878. DOI: 10.1109/COASE.2010.5584424.
[6] X. Li, B. Zhang, H. Shen, D. Tian. et al.(2014). The booting-Type ADRC of airborne photoelectrical platform. Mathematical Problems in Engineering.2014:9. DOI: 10.1109/COASE.2010.5584424.
[7] V. I. Utkin. (1977). Variable structure systems with sliding modes. IEEE Transactions on Automatic Control.22(2):212-222. DOI: 10.1109/COASE.2010.5584424.
[8] N. Chen, B. Potsaid, J. T. Wen, S. Barry. et al.Modeling and control of a fast steering mirror in imaging applications. :27-32. DOI: 10.1109/COASE.2010.5584424.
[9] V. Utkin, L. Hoon. Chattering problem in sliding mode control systems. :346-350. DOI: 10.1109/COASE.2010.5584424.
[10] B. Yao, M. Tomizuka. (1996). Smooth robust adaptive sliding mode control of manipulators with guaranteed transient performance. Journal of Dynamic Systems, Measurement, and Control.118(4):764-775. DOI: 10.1109/COASE.2010.5584424.
[11] K.-K. D. Young. (1978). Controller design for a manipulator using theory of variable structure systems. IEEE Transactions on Systems, Man, and Cybernetics.8(2):101-109. DOI: 10.1109/COASE.2010.5584424.
[12] B. Yao, M. Al-Majed, M. Tomizuka. (1997). High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments. IEEE/ASME Transactions on Mechatronics.2(2):63-76. DOI: 10.1109/COASE.2010.5584424.
[13] A. Bullard, I. Shawki. (2013). Responder fast steering mirror. SPIE Optical Engineering + Applications:6. DOI: 10.1109/COASE.2010.5584424.
[14] J. E. Slotine, W. Li. (1988). Adaptive manipulator control: a case study. IEEE Transactions on Automatic Control.33(11):995-1003. DOI: 10.1109/COASE.2010.5584424.
[15] C.-S. Liu, H. Peng. (2000). Disturbance observer based tracking control. Journal of Dynamic Systems, Measurement, and Control.122(2):332-335. DOI: 10.1109/COASE.2010.5584424.
[16] X.-H. Xu, X.-D. Han, B. Wang, H.-K. Wang. et al.(2016). Design of fast steering mirror with rigid support structure for airborne platform. Guangxue Jingmi Gongcheng/Optics and Precision Engineering.24(1):126-133. DOI: 10.1109/COASE.2010.5584424.
[17] C. Deng, T. Tang, Y. Mao, G. Ren. et al.(2017). Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems. IEEE Photonics Journal.9(3):1-11. DOI: 10.1109/COASE.2010.5584424.
[18] J. Tian, W. Yang, Z. Peng, T. Tang. et al.(2016). Application of MEMS accelerometers and gyroscopes in fast steering mirror control systems. Sensors.16(4):440. DOI: 10.1109/COASE.2010.5584424.
[19] H. Marth, M. A. Ealey, M. Donat, C. F. Pohlhammer. et al.Latest experience in design of piezoelectric-driven fine-steering mirrors. .14:248. DOI: 10.1109/COASE.2010.5584424.
[20] Y. Hori. (1996). A Review of torsional vibration control methods and a proposal of disturbance observer-based new techniques. IFAC Proceedings Volumes.29(1):990-995. DOI: 10.1109/COASE.2010.5584424.
文献评价指标
浏览 66次
下载全文 10次
评分次数 0次
用户评分 0.0分
分享 0次