首页 » 文章 » 文章详细信息
Mediators of Inflammation Volume 2019 ,2019-01-10
CD4+ TSCMs in the Bone Marrow Assist in Maturation of Antibodies against Influenza in Mice
Research Article
Kang Wu 1 , 2 , 3 Fei Wang 1 , 2 Guangwu Guo 2 Yuqing Li 2 , 3 Li-Jun Qiu 4 Xuefeng Li 2 , 3
Show affiliations
Received 2018-08-26, accepted for publication 2018-10-31, Published 2018-10-31

The bone marrow (BM) is not only a reservoir of hematopoietic stem cells but a repository of immunological memory cells. Further characterizing BM-resident memory T cells would be helpful to reveal the complicated relationship between the BM and immunological memory. In this study, we identified CD122high stem cell antigen-1 (Sca-1) high B cell lymphoma 2 (Bcl-2) high CD4+ stem cell-like memory T cells (TSCMs) as a distinct memory T cell subset, which preferentially reside in the BM, where they respond vigorously to blood-borne antigens. Interestingly, the natural CD4+ TSCMs homing to the BM colocalized with VCAM-1+ IL-15+ IL-7+ CXCL-12+ stromal cells. Furthermore, compared to spleen-resident CD4+ TSCMs, BM-resident TSCMs induced the production of high-affinity antibodies against influenza by B lymphocytes more efficiently. Taken together, these observations indicate that the BM provides an appropriate microenvironment for the survival of CD4+ TSCMs, which broadens our knowledge regarding the memory maintenance of antigen-specific CD4+ T lymphocytes.


Copyright © 2019 Kang Wu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Li-Jun Qiu.Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China, hust.edu.cn.13476164215@163.com
2. Xuefeng Li.Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China, szu.edu.cn;Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, cas.cn.xuefengli@gzhmu.edu.cn


Kang Wu,Fei Wang,Guangwu Guo,Yuqing Li,Li-Jun Qiu,Xuefeng Li. CD4+ TSCMs in the Bone Marrow Assist in Maturation of Antibodies against Influenza in Mice. Mediators of Inflammation ,Vol.2019(2019)



[1] R. Nishimura, J. Baker, A. Beilhack, R. Zeiser. et al.(2008). In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood.112(6):2563-2574. DOI: 10.1038/nm1326.
[2] D. L. Woodland, J. E. Kohlmeier. (2009). Migration, maintenance and recall of memory T cells in peripheral tissues. Nature Reviews. Immunology.9(3):153-161. DOI: 10.1038/nm1326.
[3] L. Gattinoni, X. S. Zhong, D. C. Palmer, Y. Ji. et al.(2009). Wnt signaling arrests effector T cell differentiation and generates CD8 memory stem cells. Nature Medicine.15(7):808-813. DOI: 10.1038/nm1326.
[4] A. Pierini, H. Nishikii, J. Baker, T. Kimura. et al.(2017). Foxp3 regulatory T cells maintain the bone marrow microenvironment for B cell lymphopoiesis. Nature Communications.8, article 15068. DOI: 10.1038/nm1326.
[5] R. S. Welner, P. W. Kincade. (2014). 9-1-1: HSCs respond to emergency calls. Cell Stem Cell.14(4):415-416. DOI: 10.1038/nm1326.
[6] A. C. Quinci, S. Vitale, E. Parretta, A. Soriani. et al.(2012). IL-15 inhibits IL-7R expression by memory-phenotype CD8T cells in the bone marrow. European Journal of Immunology.42(5):1129-1139. DOI: 10.1038/nm1326.
[7] A. Zumla, M. Rao, R. S. Wallis, S. H. E. Kaufmann. et al.(2016). Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. The Lancet Infectious Diseases.16(4):e47-e63. DOI: 10.1038/nm1326.
[8] X. Li, S. He, R. Li, X. Zhou. et al.(2016). infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration. Nature Microbiology.1(10, article 16132). DOI: 10.1038/nm1326.
[9] L. Zhang, J. Yu, W. Wei. (2018). Advance in targeted immunotherapy for graft-versus-host disease. Frontiers in Immunology.9:1087. DOI: 10.1038/nm1326.
[10] P. Graef, V. R. Buchholz, C. Stemberger, M. Flossdorf. et al.(2014). Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8 central memory T cells. Immunity.41(1):116-126. DOI: 10.1038/nm1326.
[11] M. Feuerer, P. Beckhove, N. Garbi, Y. Mahnke. et al.(2003). Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Medicine.9(9):1151-1157. DOI: 10.1038/nm1326.
[12] P. Muranski, Z. A. Borman, S. P. Kerkar, C. A. Klebanoff. et al.(2011). Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity.35(6):972-985. DOI: 10.1038/nm1326.
[13] D. O’Sullivan, G. J. W. van der Windt, S. C.-C. Huang, J. D. Curtis. et al.(2018). Memory CD8 T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity.49(2):375-376. DOI: 10.1038/nm1326.
[14] K. Tokoyoda, T. Egawa, T. Sugiyama, B. I. Choi. et al.(2004). Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity.20(6):707-718. DOI: 10.1038/nm1326.
[15] M. M. Moutuou, G. Page, I. Zaid, S. Lesage. et al.(2018). Restoring T cell homeostasis after allogeneic stem cell transplantation; principal limitations and future challenges. Frontiers in Immunology.9:1237. DOI: 10.1038/nm1326.
[16] M. J. Buzon, H. Sun, C. Li, A. Shaw. et al.(2014). HIV-1 persistence in CD4 T cells with stem cell-like properties. Nature Medicine.20(2):139-142. DOI: 10.1038/nm1326.
[17] I. B. Mazo, M. Honczarenko, H. Leung, L. L. Cavanagh. et al.(2005). Bone marrow is a major reservoir and site of recruitment for central memory CD8 T cells. Immunity.22(2):259-270. DOI: 10.1038/nm1326.
[18] S. Sullivan. (2018). Challenges in reducing influenza-associated mortality. Lancet.391(10127):1242-1244. DOI: 10.1038/nm1326.
[19] A. Ehninger, A. Trumpp. (2011). The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. The Journal of Experimental Medicine.208(3):421-428. DOI: 10.1038/nm1326.
[20] The Lancet Infectious Diseases. (2018). Plotting a route to a universal influenza vaccine. The Lancet Infectious Diseases.18(5):475. DOI: 10.1038/nm1326.
[21] M. Neuenhahn, D. H. Busch. (2009). The quest for CD8 memory stem cells. Immunity.31(5):702-704. DOI: 10.1038/nm1326.
[22] L. E. Silberstein, C. P. Lin. (2013). A new image of the hematopoietic stem cell vascular niche. Cell Stem Cell.13(5):514-516. DOI: 10.1038/nm1326.
[23] K. Tokoyoda, S. Zehentmeier, A. N. Hegazy, I. Albrecht. et al.(2009). Professional memory CD4 T lymphocytes preferentially reside and rest in the bone marrow. Immunity.30(5):721-730. DOI: 10.1038/nm1326.
[24] M. Feuerer, P. Beckhove, L. Bai, E. F. Solomayer. et al.(2001). Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nature Medicine.7(4):452-458. DOI: 10.1038/nm1326.
[25] J. Gooskens, W. A. F. Marijt, E. H. R. van Essen, G. F. Rimmelzwaan. et al.(2016). Host immunity dictates influenza A(H1N1)pdm09 infection outcome in hematology-oncology patients. Bone Marrow Transplantation.51(1):138-141. DOI: 10.1038/nm1326.
[26] X. Li, S. He, X. Zhou, Y. Ye. et al.(2016). Lyn delivers bacteria to lysosomes for eradication through TLR2-initiated autophagy related phagocytosis. PLoS Pathogens.12(1, article e1005363). DOI: 10.1038/nm1326.
[27] G. Cui, T. Hara, S. Simmons, K. Wagatsuma. et al.(2014). Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proceedings of the National Academy of Sciences of the United States of America.111(5):1915-1920. DOI: 10.1038/nm1326.
[28] C. T. D'Angio, C. P. Wyman, R. S. Misra, J. L. Halliley. et al.(2017). Plasma cell and serum antibody responses to influenza vaccine in preterm and full-term infants. Vaccine.35(38):5163-5171. DOI: 10.1038/nm1326.
[29] L. Gattinoni, E. Lugli, Y. Ji, Z. Pos. et al.(2011). A human memory T cell subset with stem cell-like properties. Nature Medicine.17(10):1290-1297. DOI: 10.1038/nm1326.
[30] F. E. Mercier, C. Ragu, D. T. Scadden. (2012). The bone marrow at the crossroads of blood and immunity. Nature Reviews. Immunology.12(1):49-60. DOI: 10.1038/nm1326.
[31] C. J. Turtle, H. M. Swanson, N. Fujii, E. H. Estey. et al.(2009). A distinct subset of self-renewing human memory CD8 T cells survives cytotoxic chemotherapy. Immunity.31(5):834-844. DOI: 10.1038/nm1326.
[32] J. Mateus, P. Lasso, P. Pavia, F. Rosas. et al.(2015). Low frequency of circulating CD8 T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Neglected Tropical Diseases.9(1, article e3432). DOI: 10.1038/nm1326.
[33] E. Parretta, G. Cassese, P. Barba, A. Santoni. et al.(2005). CD8 cell division maintaining cytotoxic memory occurs predominantly in the bone marrow. Journal of Immunology.174(12):7654-7664. DOI: 10.1038/nm1326.
[34] S. L. Pull, J. M. Doherty, J. C. Mills, J. I. Gordon. et al.(2005). Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proceedings of the National Academy of Sciences of the United States of America.102(1):99-104. DOI: 10.1038/nm1326.
[35] D. T. Scadden. (2006). The stem-cell niche as an entity of action. Nature.441(7097):1075-1079. DOI: 10.1038/nm1326.
[36] Y. Zhang, G. Joe, E. Hexner, J. Zhu. et al.(2005). Host-reactive CD8 memory stem cells in graft-versus-host disease. Nature Medicine.11(12):1299-1305. DOI: 10.1038/nm1326.
[37] F. Di Rosa, T. Gebhardt. (2016). Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells. Frontiers in Immunology.7:51. DOI: 10.1038/nm1326.
[38] L. L. Cavanagh, R. Bonasio, I. B. Mazo, C. Halin. et al.(2005). Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nature Immunology.6(10):1029-1037. DOI: 10.1038/nm1326.
[39] M. J. Crane, Y. Xu, W. L. Henry, S. P. Gillis. et al.(2018). Pulmonary influenza A virus infection leads to suppression of the innate immune response to dermal injury. PLoS Pathogens.14(8, article e1007212). DOI: 10.1038/nm1326.
[40] T. C. Becker, S. M. Coley, E. J. Wherry, R. Ahmed. et al.(2005). Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. The Journal of Immunology.174(3):1269-1273. DOI: 10.1038/nm1326.
[41] C. J. Luckey, C. T. Weaver. (2012). Stem-cell-like qualities of immune memory; CD4 T cells join the party. Cell Stem Cell.10(2):107-108. DOI: 10.1038/nm1326.
[42] J. Zhang, F. Huang, L. Tan, C. Bai. et al.(2016). Host protein Moloney leukemia virus 10 (MOV10) acts as a restriction factor of influenza A virus by inhibiting the nuclear import of the viral nucleoprotein. Journal of Virology.90(8):3966-3980. DOI: 10.1038/nm1326.
[43] F. Huang, J. Chen, J. Zhang, L. Tan. et al.(2018). Identification of a novel compound targeting the nuclear export of influenza A virus nucleoprotein. Journal of Cellular and Molecular Medicine.22(3):1826-1839. DOI: 10.1038/nm1326.
[44] Ö. Sercan Alp, S. Durlanik, D. Schulz, M. McGrath. et al.(2015). Memory CD8 T cells colocalize with IL-7 stromal cells in bone marrow and rest in terms of proliferation and transcription. European Journal of Immunology.45(4):975-987. DOI: 10.1038/nm1326.
浏览 106次
下载全文 40次
评分次数 0次
用户评分 0.0分
分享 0次