首页 » 文章 » 文章详细信息
GCB Bioenergy Volume 11 ,Issue 1 ,2019-02-08
Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources
ORIGINAL RESEARCH
Yan Wang 1 Felix Horlamus 2 Marius Henkel 2 Filip Kovacic 3 Sandra Schläfle 4 Rudolf Hausmann 2 Andreas Wittgens 1 , 5 , 6 Frank Rosenau 1 , 5 , 6
Show affiliations
DOI:10.1111/gcbb.12590
Received 2018-05-15, accepted for publication 2018-12-03, Published 2018-12-03
PDF
摘要

Abstract Lignocellulosic biomass is the most abundant bioresource on earth containing polymers mainly consisting of d‐glucose, d‐xylose, l‐arabinose, and further sugars. In order to establish this alternative feedstock apart from applications in food, we engineered Pseudomonas putida KT2440 as microbial biocatalyst for the utilization of xylose and arabinose in addition to glucose as sole carbon sources. The d‐xylose‐metabolizing strain P. putida KT2440_xylAB and l‐arabinose‐metabolizing strain P. putida KT2440_araBAD were constructed by introducing respective operons from Escherichia coli. Surprisingly, we found out that both recombinant strains were able to grow on xylose as well as arabinose with high cell densities and growth rates comparable to glucose. In addition, the growth characteristics on various mixtures of glucose, xylose, and arabinose were investigated, which demonstrated the efficient co‐utilization of hexose and pentose sugars. Finally, the possibility of using lignocellulose hydrolysate as substrate for the two recombinant strains was verified. The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.

关键词

Pseudomonas putida;metabolic engineering;‐arabinose;hemicellulose hydrolysate;‐xylose;biocatalyst

授权许可

Copyright © 2019 John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Andreas Wittgens.Institute for Pharmaceutical Biotechnology, Ulm University, Ulm, Germany;Ulm Center for Peptide Pharmaceuticals (U‐PEP), Ulm‐University, Ulm, Germany;Department Synthesis of Macromolecules, Max‐Planck‐Institute for Polymer Research Mainz, Mainz, Germany.andreas.wittgens@uni-ulm.de

推荐引用方式

Yan Wang,Felix Horlamus,Marius Henkel,Filip Kovacic,Sandra Schläfle,Rudolf Hausmann,Andreas Wittgens,Frank Rosenau. Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy ,Vol.11, Issue 1(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Nieves, L. M., Panyon, L. A., & Wang, X. (2015). Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Frontiers in Bioengineering and Biotechnology, 3, 17. https://doi.org/10.3389/fbioe.2015.00017
[2] Kim, B. H., & Gadd, G. M. (2009). Bacterial physiology and metabolism. Quarterly Review of Biology, 84, 206.
[3] Asgher, M., Ahmad, Z., & Iqbal, H. M. N. (2013). Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio‐ethanol production. Industrial Crops and Products, 44, 488–495. https://doi.org/10.1016/j.indcrop.2012.10.005
[4] Kawaguchi, H., Verte, A. A., Okino, S., Inui, M., & Yukawa, H. (2006). Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Applied and Environmental Microbiology, 72, 3418–3428. https://doi.org/10.1128/AEM.72.5.3418-3428.2006
[5] Blattner, F. R., Plunkett, G. 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., … Shao, Y. (1997). The complete genome sequence of Escherichia coli K‐12. Science, 277, 1453–1462. https://doi.org/10.1126/science.277.5331.1453
[6] Poirier, Y., Nawrath, C., & Somerville, C. (1995). Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology (NY), 13, 142–150. https://doi.org/10.1038/nbt0295-142
[7] Aristidou, A., & Penttilä, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11, 187–198. https://doi.org/10.1016/S0958-1669(00)00085-9
[8] Poblete‐Castro, I., Becker, J., Dohnt, K., Dos Santos, V. M., & Wittmann, C. (2012). Industrial biotechnology of Pseudomonas putida and related species. Applied Microbiology and Biotechnology, 93, 2279–2290. https://doi.org/10.1007/s00253-012-3928-0
[9] Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd, & Peterson, K. M. (1995). Four new derivatives of the broad‐host‐range cloning vector pBBR1MCS, carrying different antibiotic‐resistance cassettes. Gene, 166, 175–176. https://doi.org/10.1016/0378-1119(95)00584-1
[10] Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291. https://doi.org/10.1007/s10295-003-0049-x
[11] Lavarack, B. P., Griffin, G. J., & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass & Bioenergy, 23, 367–380. https://doi.org/10.1016/S0961-9534(02)00066-1
[12] Cha, M., Lee, N., Kim, M., Kim, M., & Lee, S. (2008). Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresource Technology, 99, 2192–2199. https://doi.org/10.1016/j.biortech.2007.05.035
[13] Le Meur, S., Zinn, M., Egli, T., Thöny‐Meyer, L., & Ren, Q. (2012). Production of medium‐chain‐length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnology, 12, 53. https://doi.org/10.1186/1472-6750-12-53
[14] Schläfle, S., Tervahartiala, T., Senna, T., & Kölling‐Paternoga, R. (2017). Quantitative and visual analysis of enzymatic lignocellulose degradation. Biocatalysis and Agricultural Biotechnology, 11, 42–49. https://doi.org/10.1016/j.bcab.2017.06.002
[15] Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729. https://doi.org/10.1021/ie801542g
[16] Stincone, A., Prigione, A., Cramer, T., Wamelink, M. M. C., Campbell, K., Cheung, E., … Ralser, M. (2015). The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biological Reviews, 90, 927–963. https://doi.org/10.1111/brv.12140
[17] Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, 787532. https://doi.org/10.4061/2011/787532
[18] Shahzadi, T., Mehmood, S., Irshad, M., Anwar, Z., Afroz, A., Zeeshan, N., … Sughra, K. (2014). Advances in lignocellulosic biotechnology : A brief review on lignocellulosic biomass and cellulases. Advances in Bioscience and Biotechnology, 5, 246–251.
[19] Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) (2012). Stellungnahme der ZKBS zur Risikobewertung von Pseudomonas putida als Spender‐ oder Empfängerorganismus für gentechnische Arbeiten gemäß § 5 Absatz 1 GenTSV. Az. 6790–05‐01‐099. 2, geänderte Fassung.
[20] Wittgens, A., Kovacic, F., Müller, M. M., Gerlitzki, M., Santiago‐Schübel, B., Hofmann, D., … Rosenau, F. (2017). Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Applied Microbiology and Biotechnology, 101, 2865–2878. https://doi.org/10.1007/s00253-016-8041-3
[21] Loeschcke, A., & Thies, S. (2015). Pseudomonas putida – A versatile host for the production of natural products. Applied Microbiology and Biotechnology, 99, 6197–6214. https://doi.org/10.1007/s00253-015-6745-4
[22] Henkel, M., Müller, M. M., Kügler, J. H., Lovaglio, R. B., Contiero, J., Syldatk, C., & Hausmann, R. (2012). Rhamnolipids as biosurfactants from renewable resources: Concepts for next‐generation rhamnolipid production. Process Biochemistry, 47, 1207–1219. https://doi.org/10.1016/j.procbio.2012.04.018
[23] Wittgens, A., Santiago‐Schuebel, B., Henkel, M., Tiso, T., Blank, L. M., Hausmann, R., … Rosenau, F. (2018). Heterologous production of long‐chain rhamnolipids from Burkholderia glumae in Pseudomonas putida – A step forward to tailor‐made rhamnolipids. Applied Microbiology and Biotechnology, 102, 1229–1239. https://doi.org/10.1007/s00253-017-8702-x
[24] Martins Dos Santos, V. A. P., Heim, S., Moore, E. R. B., Strätz, M., & Timmis, K. N. (2004). Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environmental Microbiology, 6, 1264–1286. https://doi.org/10.1111/j.1462-2920.2004.00734.x
[25] Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7
[26] Tiso, T., Sabelhaus, A., Behrens, B., Wittgens, A., Rosenau, F., Hayen, H., & Blank, L. M. (2016). Creating metabolic demand as an engineering strategy in Pseudomonas putida – Rhamnolipid synthesis as an example. Metabolic Engineering Communications, 3, 234–244. https://doi.org/10.1016/j.meteno.2016.08.002
[27] Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9, 1621–1651. https://doi.org/10.3390/ijms9091621
[28] Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56, 1–24. https://doi.org/10.1016/S0168-1656(97)00073-4
[29] Grant, S. G. N., Jessee, J., Bloom, F. R., & Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation‐restriction mutants. Proceedings of the National Academy of Sciences USA, 87, 4645–4649. https://doi.org/10.1073/pnas.87.12.4645
[30] Gu, Y., Ding, Y., Ren, C., Sun, Z., Rodionov, D. A., Zhang, W., … Jiang, W. (2010). Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics, 11, 255. https://doi.org/10.1186/1471-2164-11-255
[31] Xiong, X., Wang, X., & Chen, S. (2016). Engineering of an L‐arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. Journal of Industrial Microbiology & Biotechnology, 43, 1017–1025. https://doi.org/10.1007/s10295-016-1778-y
[32] Hahn‐Hägerdal, B., Galbe, M., Gorwa‐Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Bio‐ethanol – The fuel of tomorrow from the residues of today. Trends in Biotechnology, 24, 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004
[33] Meijnen, J. P., De Winde, J. H., & Ruijssenaars, H. J. (2008). Engineering Pseudomonas putida S12 for efficient utilization of D‐xylose and L‐arabinose. Applied and Environmental Microbiology, 74, 5031–5037. https://doi.org/10.1128/AEM.00924-08
[34] Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166, 557–580. https://doi.org/10.1016/S0022-2836(83)80284-8
[35] Wittgens, A., Tiso, T., Arndt, T. T., Wenk, P., Hemmerich, J., Müller, C., … Blank, L. M. (2011). Growth independent rhamnolipid production from glucose using the non‐pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 10, 80. https://doi.org/10.1186/1475-2859-10-80
[36] Hardy, G. P. M. A., Teixeira De Mattos, M. J., & Neijssel, O. M. (1993). Energy conservation by pyrroloquinoline quinol‐linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon‐limited growth in chemostat culture. FEMS Microbiology Letters, 107, 107–110.
[37] Kawaguchi, H., Sasaki, M., Vertès, A. A., Inui, M., & Yukawa, H. (2008). Engineering of an L‐arabinose metabolic pathway in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 77, 1053–1062. https://doi.org/10.1007/s00253-007-1244-x
[38] Meijnen, J. P., De Winde, J. H., & Ruijssenaars, H. J. (2012). Metabolic and regulatory rearrangements underlying efficient D‐xylose utilization in engineered Pseudomonas putida S12. Journal of Biological Chemistry, 287, 14606–14614.
[39] Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro‐industrial lignocellulosic biomass a key to unlock the future bio‐energy: A brief review. Journal of Radiation Research and Applied Sciences, 7, 163–173. https://doi.org/10.1016/j.jrras.2014.02.003
[40] Mussatto, S., & Teixeira, J. (2010). Lignocellulose as raw material in fermentation processes. Applied Microbiology and Biotechnology, 2, 897–907.
[41] Xu, F., Sun, J. X., Liu, C. F., & Sun, R. C. (2006). Comparative study of alkali‐ and acidic organic solvent‐soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydrate Research, 341, 253–261. https://doi.org/10.1016/j.carres.2005.10.019
[42] Iqbal, H. M., & Asgher, M. (2013). Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL‐04. Protein and Peptide Letters, 20, 591–600.
[43] Tiso, T., Zauter, R., Tulke, H., Leuchtle, B., Li, W. J., Behrens, B., … Blank, L. M. (2018). Designer rhamnolipids by reduction of congener diversity: Production and characterization. Microbial Cell Factories, 16, 225. https://doi.org/10.1186/s12934-017-0838-y
[44] Wendisch, V. F., Brito, L. F., Gil Lopez, M., Hennig, G., Pfeifenschneider, J., Sgobba, E., & Veldmann, K. H. (2016). The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. Journal of Biotechnology, 234, 139–157. https://doi.org/10.1016/j.jbiotec.2016.07.022
[45] Nelson, K. E., Weinel, C., Paulsen, I. T., Dodson, R. J., Hilbert, H., Martins dos Santos, V. A. P., … Fraser, C. M. (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 4, 799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x
[46] Wilms, B., Hauck, A., Reuss, M., Syldatk, C., Mattes, R., Siemann, M., & Altenbuchner, J. (2001). High‐cell‐density fermentation for production of L‐N‐carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnology and Bioengineering, 73, 95–103. https://doi.org/10.1002/bit.1041
[47] Chen, T., Liu, W. X., Fu, J., Zhang, B., & Tang, Y. J. (2013). Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. Journal of Biotechnology, 168, 499–505. https://doi.org/10.1016/j.jbiotec.2013.09.020
[48] Choi, K. H., Kumar, A., & Schweizer, H. P. (2006). A 10‐min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. Journal of Microbiological Methods, 64, 391–397. https://doi.org/10.1016/j.mimet.2005.06.001
[49] Himmel, M. E., Xu, Q., Luo, Y., Ding, S.‐Y., Lamed, R., & Bayer, E. A. (2010). Microbial enzyme systems for biomass conversion: Emerging paradigms. Biofuels, 1, 323–341. https://doi.org/10.4155/bfs.09.25
[50] Deanda, K., Zhang, M., Eddy, C., & Picataggio, S. (1996). Development of an arabinose‐fermenting Zymomonas mobilis strain by metabolic pathway engineering. Applied and Environmental Microbiology, 62, 4465–4470.
[51] Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K., & Ramos, J. L. (1997). AraC/XylS family of transcriptional regulators. Microbiology and Molecular Biology Reviews, 61, 393–410.
[52] Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 267, 240–243. https://doi.org/10.1126/science.267.5195.240
[53] Hofmann, J. D., Otto, A., Berges, M., Biedendieck, R., Michel, A. M., Becher, D., … Neumann‐Schaal, M. (2018). Metabolic reprogramming of Clostridioides difficile during the stationary phase with the induction of toxin production. Frontiers in Microbiology, 9, 1970. https://doi.org/10.3389/fmicb.2018.01970
文献评价指标
浏览 329次
下载全文 52次
评分次数 0次
用户评分 0.0分
分享 0次