首页 » 文章 » 文章详细信息
GCB Bioenergy Volume 11 ,Issue 1 ,2019-02-08
Miscanthus for biogas production: Influence of harvest date and ensiling on digestibility and methane hectare yield
BIOBASED VALUE CHAINS FOR A GROWING BIOECONOMY
Anja Mangold 1 Iris Lewandowski 1 Jens Hartung 2 Andreas Kiesel 1
Show affiliations
DOI:10.1111/gcbb.12584
Received 2018-04-26, accepted for publication 2018-11-20, Published 2018-11-20
PDF
摘要

Abstract The 8,000 biogas plants currently in operation in Germany are mainly fed with biomass from annual crops. However, feedstock from perennial crops such as miscanthus is expected to be more environmentally benign. If miscanthus is to be used in greater amounts as a substrate for anaerobic digestion, storage will become a relevant topic, as a continuous supply of biomass throughout the year is necessary. The objective of this study was to identify the miscanthus harvest time that best balances the simultaneous achievement of high silage quality, high digestibility and high methane hectare yields. For this purpose, biomass from four miscanthus genotypes with varying senescence characteristics was harvested on three different dates in autumn 2017. Part of the biomass was ensiled, and the methane yield of both ensiled and non‐ensiled biomass was analysed in a biogas batch test to assess the effect of ensiling on the methane hectare yield and digestion velocity. The ensiled biomass was found to have an up to 7% higher substrate‐specific methane yield and also showed a higher digestion velocity than the non‐ensiled biomass. The silage quality was best when miscanthus was harvested in mid‐October, due to highest lactic acid content (average: 3.0% of DM) and lowest pH (average: 4.39) compared to the harvests in mid‐September and beginning of October. Mass losses during ensiling (as high as 7.6% of fresh matter for the M. sinensis genotype Sin55) were compensated for by a higher substrate‐specific methane yield (up to 353 Nml CH4 (g oDM)−1) in ensiled miscanthus. This resulted in non‐significantly different methane hectare yields for non‐ensiled (average: 4.635 Nm3 CH4/ha) and ensiled miscanthus biomass (4.803 Nm3 CH4/ha). A comparison of the four genotypes suggests that Miscanthus x giganteus is the most suitable genotype for ensiling as it had the best silage quality.

关键词

silage quality;perennial;miscanthus genotypes;energy crop;biogas;anaerobic digestion

授权许可

Copyright © 2019 John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Anja Mangold.Biobased Products and Energy Crops (340b), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.amangold@uni-hohenheim.de

推荐引用方式

Anja Mangold,Iris Lewandowski,Jens Hartung,Andreas Kiesel. Miscanthus for biogas production: Influence of harvest date and ensiling on digestibility and methane hectare yield. GCB Bioenergy ,Vol.11, Issue 1(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Ruf, T., Schmidt, A., Delfosse, P., & Emmerling, C. (2017). Harvest date of Miscanthus x giganteus affects nutrient cycling, biomass development and soil quality. Biomass and Bioenergy, 100, 62–73. https://doi.org/10.1016/j.biombioe.2017.03.010
[2] Purdy, S. J., Cunniff, J., Maddison, A. L., Jones, L. E., Barraclough, T., Castle, M., … Clifton‐Brown, J. (2015). Seasonal carbohydrate dynamics and climatic regulation of senescence in the perennial grass, Miscanthus. Bioenergy Research, 8, 28–41. https://doi.org/10.1007/s12155-014-9500-2
[3] Kiesel, A., & Lewandowski, I. (2017). Miscanthus as biogas substrate ‐ cutting tolerance and potential for anaerobic digestion. GCB Bioenergy, 9, 153–167. https://doi.org/10.1111/gcbb.12330
[4] Herrmann, C., Heiermann, M., & Idler, C. (2011). Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology, 102, 5153–5161. https://doi.org/10.1016/j.biortech.2011.01.012
[5] Patrizio, P., Leduc, S., Chinese, D., Dotzauer, E., & Kraxner, F. (2015). Biomethane as transport fuel – A comparison with other biogas utilization pathways in northern Italy. Applied Energy, 157, 25–34. https://doi.org/10.1016/j.apenergy.2015.07.074
[6] Fachagentur Nachwachsende Rohstoffe (FNR) (2017). Bioenergy in Germany Facts and Figures. Gülzow, Germany: Solid Fuels Biofuels Biogas. Retrieved from http://www.fnr.de/fileadmin/allgemein/pdf/broschueren/broschuere_basisdaten_bioenergie_2017_engl_web.pdf
[7] DLG‐Richtlinie für die Prüfung von Siliermitteln auf DLG‐Gütezeichen‐Fähigkeit (2013). [DLG guidline for the assessment of silage additives (2013)].
[8] Schmidt, A., Lemaigre, S., Ruf, T., Delfosse, P., & Emmerling, C. (2018). Miscanthus as biogas feedstock: Influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons. Biomass Conversion and Biorefinery, 8, 245–254. https://doi.org/10.1007/s13399-017-0274-6
[9] Fernandes, T. V., Bos, G. J., Zeeman, G., Sanders, J. P., & van Lier, J. B. (2009). Effects of thermo‐chemical pre‐treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresource Technology, 100, 2575–2579. https://doi.org/10.1016/j.biortech.2008.12.012
[10] Wagner, M., Mangold, A., Lask, J., Petig, E., Kiesel, A., & Lewandowski, I. (2019). Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy, 11, 34–49. https://doi.org/10.1111/gcbb.12567
[11] Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044
[12] Wahid, R., Nielsen, S. F., Hernandez, V. M., Ward, A. J., Gislum, R., Jørgensen, U., & Møller, H. B. (2015). Methane production potential from Miscanthus sp. Effect of harvesting time, genotypes and plant fractions. Biosystems Engineering, 133, 71–80. https://doi.org/10.1016/j.biosystemseng.2015.03.005
[13] Szymańska, G., Sulewksa, H., & Selwet, M. (2014). Hygienic condition of maize silage (Zea mays L.) depending on cutting height and ensiling additive. Turkish Journal of Agriculture and Forestry, 38, 354–361. https://doi.org/10.3906/tar-1304-51
[14] Galler, J. (2011): Silagebereitung von A bis Z Grundlagen – Siliersysteme – Kenngrößen. Salzburg, Austria: Landwirtschaftskammer.
[15] Liu, S., Ge, X., Liu, Z., & Li, Y. (2016). Effect of harvest date on Arundo donax L. (giant reed) composition, ensilage performance, and enzymatic digestibility. Bioresource Technology, 205, 97–103. https://doi.org/10.1016/j.biortech.2016.01.011
[16] Mast, B., Lemmer, A., Oechsner, H., Reinhardt‐Hanisch, A., Claupein, W., & Graeff‐Hönninger, S. (2014). Methane yield potential of novel perennial biogas crops influenced by harvest date. Industrial Crops and Products, 58, 194–203. https://doi.org/10.1016/j.indcrop.2014.04.017
[17] Frydendal‐Nielsen, S., Hjorth, M., Baby, S., Felby, C., Jørgensen, U., & Gislum, R. (2016). The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus. Bioresource Technology, 218, 1008–1015. https://doi.org/10.1016/j.biortech.2016.07.046
[18] Mangold, A., Lewandowski, I., Möhring, J., Clifton‐Brown, J., Krzyżak, J., Mos, M., … Kiesel, A. (2019). Harvest date and leaf:Stem ratio determine methane hectare yield of miscanthus biomass. GCB Bioenergy, 11, 21–33. https://doi.org/10.1111/gcbb.12549
[19] Scholz, M., Melin, T., & Wessling, M. (2013). Transforming biogas into biomethane using membrane technology. Renewable and Sustainable Energy Reviews, 17, 199–212. https://doi.org/10.1016/j.rser.2012.08.009
[20] Mukengele, M., & Oechsner, H. (2007). Einfluss der Silierung auf den spezifischen Methanertrag bei Mais. Landtechnik, 62, 21–21.
[21] Klimiuk, E., Pokój, T., Budzyński, W., & Dubis, B. (2010). Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresource Technology, 101, 9527–9535. https://doi.org/10.1016/j.biortech.2010.06
[22] McCalmont, J. P., Hastings, A., McNamara, N. P., Richter, G. M., Robson, P., Donnison, I. S., & Clifton‐Brown, J. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Global Change Biology. Bioenergy, 9(3), 489–507. https://doi.org/10.1111/gcbb.12294
[23] Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, 118, 173–182. https://doi.org/10.1016/j.agee.2006.05.007
[24] Mayer, F., Gerin, P. A., Noo, A., Lemaigre, S., Stilmant, D., Schmit, T., … Delfosse, P. (2014). Assessment of energy crops alternative to maize for biogas production in the Greater Region. Bioresource Technology, 166, 358–367. https://doi.org/10.1016/j.biortech.2014.05.054
[25] Teixeira Franco, R., Buffière, P., & Bayard, R. (2016). Ensiling for biogas production. Critical parameters. A review. Biomass and Bioenergy, 94, 94–104. https://doi.org/10.1016/j.biombioe.2016.08.014
[26] Blanco‐Canqui, H. (2010). Energy crops and their implications on soil and environment. Agronomy Journal, 102, 403. https://doi.org/10.2134/agronj2009.0333
[27] Whittaker, C., Hunt, J., Misselbrook, T., & Shield, I. (2016). How well does Miscanthus ensile for use in an anaerobic digestion plant? Biomass and Bioenergy, 88, 24–34. https://doi.org/10.1016/j.biombioe.2016.03.018
[28] VDI‐Gesellschaft Energie und Umwelt (2016). Fermentation of organic materials Characterisation of the substrate, sampling, collection of material data, fermentation tests.
[29] Baldini, M., da Borso, F., Ferfuia, C., Zuliani, F., & Danuso, F. (2017). Ensilage suitability and bio‐methane yield of Arundo donax and Miscanthus × giganteus. Industrial Crops and Products, 95, 264–275. https://doi.org/10.1016/j.indcrop.2016.10.031
[30] Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53. https://doi.org/10.1016/j.pecs.2014.01.001
[31] von Cossel, M., Möhring, J., Kiesel, A., & Lewandowski, I. (2018). Optimization of specific methane yield prediction models for biogas crops based on lignocellulosic components using non‐linear and crop‐specific configurations. Industrial Crops and Products, 120, 330–342. https://doi.org/10.1016/j.indcrop.2018.04.042
[32] Kiesel, A., Wagner, M., & Lewandowski, I. (2017). Environmental performance of Miscanthus, switchgrass and maize. Can C4 perennials increase the sustainability of biogas production? Sustainability, 9, 5.
[33] Nachwachsende, Fachagentur Rohstoffe (FNR) (2012). Biomethan, Gülzow. Retrieved from https://mediathek.fnr.de/media/downloadable/files/samples/f/n/fnr_biomethan_web.pdf
[34] Vervaeren, H., Hostyn, K., Ghekiere, G., & Willems, B. (2010). Biological ensilage additives as pretreatment for maize to increase the biogas production. Renewable Energy, 35, 2089–2093. https://doi.org/10.1016/j.renene.2010.02.010
[35] Kiesel, A., Nunn, C., Iqbal, Y., et al. (2017a). Site‐specific management of Miscanthus genotypes for combustion and anaerobic digestion: A comparison of energy yields. Frontiers in Plant Science, 8, 347.