首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2019 ,2019-01-03
Single Remote Sensing Multispectral Image Dehazing Based on a Learning Framework
Research Article
Shuai Shao 1 , 2 Yongfei Guo 1 Zeshu Zhang 1 Hangfei Yuan 1
Show affiliations
DOI:10.1155/2019/4131378
Received 2018-07-04, accepted for publication 2018-12-10, Published 2018-12-10
PDF
摘要

Given that a single remote sensing image dehazing is an ill-posed problem, this is still a challenging task. In order to improve the visibility of a single hazy remote sensing multispectral image, we developed a novel and effective algorithm based on a learning framework. A linear regression model with the relevant features of haze was established. And the gradient descent method is applied to the learning model. Then a hazy image accurate transmission map is obtained by learning the coefficients of the linear model. In addition, we proposed a more effective method to estimate the atmospheric light, which can restrain the influence of highlight areas on the atmospheric light acquisition. Compared with the traditional haze removal methods, the experimental results demonstrate that the proposed algorithm can achieve better visual effect and color fidelity. Both subjective evaluation and objective assessments indicate that the proposed method achieves a better performance than the state-of-the-art methods.

授权许可

Copyright © 2019 Shuai Shao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Shuai Shao.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China, cas.cn;University of Chinese Academy of Sciences, Beijing 100049, China, ucas.ac.cn.damond0424@yeah.net

推荐引用方式

Shuai Shao,Yongfei Guo,Zeshu Zhang,Hangfei Yuan. Single Remote Sensing Multispectral Image Dehazing Based on a Learning Framework. Mathematical Problems in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. J. Jobson, Z.-U. Rahman, G. A. Woodell, G. D. Hines. et al.A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes. . DOI: 10.1109/TGRS.2010.2048116.
[2] L. K. Choi, J. You, A. C. Bovik. (2015). Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Transactions on Image Processing.24(11):3888-3901. DOI: 10.1109/TGRS.2010.2048116.
[3] W. Yi Chen. (2017). Air quality monitoring using mobile microscopy and machine learning. Light Science & Applications.6(9). DOI: 10.1109/TGRS.2010.2048116.
[4] K. He, J. Sun, X. Tang. (2011). Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence.33(12):2341-2353. DOI: 10.1109/TGRS.2010.2048116.
[5] W. Wang, W. Li, Q. Guan, M. Qi. et al.(2015). Multiscale single image dehazing based on adaptive wavelet fusion. Mathematical Problems in Engineering.2015-14. DOI: 10.1109/TGRS.2010.2048116.
[6] Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar. (2003). Polarization-based vision through haze. Applied Optics.42(3):511-525. DOI: 10.1109/TGRS.2010.2048116.
[7] Y. Song, H. Luo, R. Lu, J. Ma. et al.(2017). Dehazed image quality assessment by haze-line theory. Journal of Physics Conference Series. DOI: 10.1109/TGRS.2010.2048116.
[8] Y. Zhang, B. Guindon, J. Cihlar. (2002). An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sensing of Environment.82(2-3):173-187. DOI: 10.1109/TGRS.2010.2048116.
[9] Q. Liu, X. Gao, L. He, W. Lu. et al.(2017). Haze removal for a single visible remote sensing image. Signal Processing.137:33-43. DOI: 10.1109/TGRS.2010.2048116.
[10] W. Ni, X. Gao, Y. Wang. (2015). Single satellite image dehazing via linear intensity transformation and local property analysis. Neurocomputing.175:25-39. DOI: 10.1109/TGRS.2010.2048116.
[11] Y. Xiao Chong. (2018). Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light Science & Applications.7(4). DOI: 10.1109/TGRS.2010.2048116.
[12] Q. Zhu, J. Mai, L. Shao. (2015). A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing.24(11):3522-3533. DOI: 10.1109/TGRS.2010.2048116.
[13] L. I. Changling, Y. Song, X. Liu. (2015). Haze removal method for traffic images based on multi-scale retinex theory. Journal of Computer Applications. DOI: 10.1109/TGRS.2010.2048116.
[14] R. Fattal. (2008). Single Image Dehazing. DOI: 10.1109/TGRS.2010.2048116.
[15] G. Zhenfei, M. Ju, D. Zhang. (2017). A single image dehazing method using average saturation prior. Mathematical Problems in Engineering.2017-17. DOI: 10.1109/TGRS.2010.2048116.
[16] E. Peli. (1990). Contrast in complex images. Journal of the Optical Society of America A: Optics and Image Science, and Vision.7(10):2023-2040. DOI: 10.1109/TGRS.2010.2048116.
[17] R. T. Tan. Visibility in bad weather from a single image. :1-8. DOI: 10.1109/TGRS.2010.2048116.
[18] M. Dalla Mura, J. A. Benediktsson, B. Waske, L. Bruzzone. et al.(2010). Morphological attribute profiles for the analysis of very high resolution images. IEEE Transactions on Geoscience and Remote Sensing.48(10):3747-3762. DOI: 10.1109/TGRS.2010.2048116.
[19] A. Makarau, R. Richter, R. Muller, P. Reinartz. et al.(2014). Haze detection and removal in remotely sensed multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing.52(9):5895-5905. DOI: 10.1109/TGRS.2010.2048116.
[20] B. Jiang, W. Zhang, J. Zhao, Y. Ru. et al.(2016). Gray-scale image dehazing guided by scene depth information. Mathematical Problems in Engineering.2016-10. DOI: 10.1109/TGRS.2010.2048116.
[21] P. S. Chavez. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment.24(3):459-479. DOI: 10.1109/TGRS.2010.2048116.
[22] W. Ren, S. Liu, H. Zhang, J. Pan. et al.Single image dehazing via multi-scale convolutional neural networks. :154-169. DOI: 10.1109/TGRS.2010.2048116.
[23] Y. Li, Q. Miao, R. Liu, J. Song. et al.(2018). A multi-scale fusion scheme based on haze-relevant features for single image dehazing. Neurocomputing.283:73-86. DOI: 10.1109/TGRS.2010.2048116.
[24] M. Qin, F. Xie, W. Li, Z. Shi. et al.(2018). Dehazing for multispectral remote sensing images based on a convolutional neural network with the residual architecture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing:1-11. DOI: 10.1109/TGRS.2010.2048116.
[25] J. Long, Z. Shi, W. Tang. Fast haze removal for a single remote sensing image using dark channel prior. :132-135. DOI: 10.1109/TGRS.2010.2048116.
[26] P. Chavez. (1996). Image-based atmospheric corrections–Revisited and improved. Photogrammetric Engineering and Remote Sensing.62(9):1025-1036. DOI: 10.1109/TGRS.2010.2048116.
[27] F. Liu, L. Cao, X. Shao, P. Han. et al.(2015). Polarimetric dehazing utilizing spatial frequency segregation of images. Applied Optics.54(27):8116-8122. DOI: 10.1109/TGRS.2010.2048116.
[28] K. Tang, J. Yang, J. Wang. Investigating haze-relevant features in a learning framework for image dehazing. :2995-3002. DOI: 10.1109/TGRS.2010.2048116.
[29] S. K. Nayar, S. G. Narasimhan. Vision in bad weather. .2:820-827. DOI: 10.1109/TGRS.2010.2048116.
[30] B. Li, X. Peng, Z. Wang, J. Xu. et al.AOD-Net: All-in-one dehazing network. :4780-4788. DOI: 10.1109/TGRS.2010.2048116.
[31] S. Ansia, A. L. Aswathy. Single image haze removal using white balancing and saliency map. :12-19. DOI: 10.1109/TGRS.2010.2048116.
[32] S. G. Narasimhan, S. K. Nayar. (2002). Vision and the atmosphere. International Journal of Computer Vision.48(3):233-254. DOI: 10.1109/TGRS.2010.2048116.
文献评价指标
浏览 7次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次