首页 » 文章 » 文章详细信息
Journal of Function Spaces Volume 2019 ,2019-01-02
Inequalities of Lyapunov and Stolarsky Type for Choquet-Like Integrals with respect to Nonmonotonic Fuzzy Measures
Research Article
Ting Xie 1 , 2 Zengtai Gong 1
Show affiliations
DOI:10.1155/2019/4631530
Received 2018-10-09, accepted for publication 2018-11-21, Published 2018-11-21
PDF
摘要

The aim of this paper is to generalize the Choquet-like integral with respect to a nonmonotonic fuzzy measure for generalized real-valued functions and set-valued functions, which is based on the generalized pseudo-operations and σ-⊕-measures. Furthermore, the characterization theorem and transformation theorem for the integral are given. Finally, we study the Lyapunov type inequality and Stolarsky type inequality for the Choquet-like integral.

授权许可

Copyright © 2019 Ting Xie and Zengtai Gong. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zengtai Gong.College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China, nwnu.edu.cn.zt-gong@163.com

推荐引用方式

Ting Xie,Zengtai Gong. Inequalities of Lyapunov and Stolarsky Type for Choquet-Like Integrals with respect to Nonmonotonic Fuzzy Measures. Journal of Function Spaces ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Sugeno, T. Murofushi. (1987). Pseudo-additive measures and integrals. Journal of Mathematical Analysis and Applications.122(1):197-222. DOI: 10.1016/0165-0114(89)90194-2.
[2] T. Murofushi, M. Sugeno. (1989). An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets and Systems.29(2):201-227. DOI: 10.1016/0165-0114(89)90194-2.
[3] Z.-T. Gong, T. Xie. (2014). Pseudo-differentiability, pseudo-integrability and nonlinear differential equations. Journal of Computational Analysis and Applications.16(4):713-721. DOI: 10.1016/0165-0114(89)90194-2.
[4] G. Choquet. (1955). Theory of capacities. Annales de l'Institut Fourier.5:131-295. DOI: 10.1016/0165-0114(89)90194-2.
[5] E. Pap. (2002). Pseudo-additive measures and their aplications. Handbook of Measure Theory:1237-1260. DOI: 10.1016/0165-0114(89)90194-2.
[6] S. Abbaszadeh, A. Ebadian, M. Jaddi. (2019). Hölder type integral inequalities with different pseudo-operations. Asian-European Journal of Mathematics.12:15. DOI: 10.1016/0165-0114(89)90194-2.
[7] A. Markova, B. Riecan. (1996). On the double g-integral. Novi Sad Journal of Mathematics.26(2):161-171. DOI: 10.1016/0165-0114(89)90194-2.
[8] D. Dubois, H. Prade. (1982). A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information. International Journal of General Systems.8(1):43-61. DOI: 10.1016/0165-0114(89)90194-2.
[9] R. Mesiar. (1996). Pseudo-linear integrals and derivatives based on a generator g. Tatra Mountains Mathematical Publications.8:67-70. DOI: 10.1016/0165-0114(89)90194-2.
[10] S. Abbaszadeh, A. Ebadian. (2017). Nonlinear integrals and Hadamard-type inequalities. Soft Computing.22(9):2843-2849. DOI: 10.1016/0165-0114(89)90194-2.
[11] H. Agahi, R. Mesiar, Y. Ouyang, E. Pap. et al.(2014). On Stolarsky inequality for Sugeno and Choquet integrals. Information Sciences.266:134-139. DOI: 10.1016/0165-0114(89)90194-2.
[12] L. Wu, J. Sun, X. Ye, L. Zhu. et al.(2010). Hölder type inequality for Sugeno integral. Fuzzy Sets and Systems.161(17):2237-2347. DOI: 10.1016/0165-0114(89)90194-2.
[13] B. Mihailović, M. Strboja. Generalized Minkowski type inequality for pseudo-integral. :000099-000104. DOI: 10.1016/0165-0114(89)90194-2.
[14] A. Flores-Franulič, H. Román-Flores, Y. Chalco-Cano. (2008). A note on fuzzy integral inequality of Stolarsky type. Applied Mathematics and Computation.196(1):55-59. DOI: 10.1016/0165-0114(89)90194-2.
[15] S. Abbaszadeh, M. E. Gordji, E. Pap, A. Szakál. et al.(2017). Jensen-type inequalities for Sugeno integral. Information Sciences.376:148-157. DOI: 10.1016/0165-0114(89)90194-2.
[16] C.-H. Ling. (1965). Representation of associative functions. Publicationes Mathematicae.12:189-212. DOI: 10.1016/0165-0114(89)90194-2.
[17] J. Šipoš. (1979). Integral with respect to a pre-measure. Mathematica Slovaca.29(2):141-155. DOI: 10.1016/0165-0114(89)90194-2.
[18] R. J. Aumann. (1965). Integrals of set-valued functions. Journal of Mathematical Analysis and Applications.12(1):1-12. DOI: 10.1016/0165-0114(89)90194-2.
[19] D. Denneberg. (1994). Non-Additive Measure and Integral. DOI: 10.1016/0165-0114(89)90194-2.
[20] E. Pap. (1995). Null-Additive Set Functions. DOI: 10.1016/0165-0114(89)90194-2.
[21] T. Murofushi, M. Sugeno. (1991). A theory of fuzzy measures: representations, the Choquet integral, and null sets. Journal of Mathematical Analysis and Applications.159(2):532-549. DOI: 10.1016/0165-0114(89)90194-2.
[22] E. Klein, A. C. Thompson. (1984). Theory of Correspondences. DOI: 10.1016/0165-0114(89)90194-2.
[23] H. Ichihashi, H. Tanaka, K. Asai. (1988). Fuzzy integrals based on pseudo-additions and multiplications. Journal of Mathematical Analysis and Applications.130(2):354-364. DOI: 10.1016/0165-0114(89)90194-2.
[24] R. Mesiar. (1995). Choquet-like integrals. Journal of Mathematical Analysis and Applications.194(2):477-488. DOI: 10.1016/0165-0114(89)90194-2.
[25] D. Schmeidler. (1986). Integral representation without additivity. Proceedings of the American Mathematical Society.97(2):255-261. DOI: 10.1016/0165-0114(89)90194-2.
[26] Z. Y. Wang, G. J. Klir. (1992). Fuzzy Measure Theory. DOI: 10.1016/0165-0114(89)90194-2.
[27] N. Ralević. (1994). Some new properties of g-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.24:139-157. DOI: 10.1016/0165-0114(89)90194-2.
[28] R. Mesiar, A. Kolesarova, H. Bustince, G. P. Dimuro. et al.(2016). Fusion functions based discrete Choquet-like integrals. European Journal of Operational Research.252(2):601-609. DOI: 10.1016/0165-0114(89)90194-2.
[29] J. Aczel. (1966). Lectures on Functional Equations and Their Applications. DOI: 10.1016/0165-0114(89)90194-2.
[30] D. H. Hong. (2011). A Liapunov type inequality for Sugeno integrals. Nonlinear Analysis. Theory, Methods & Applications.74(18):7296-7303. DOI: 10.1016/0165-0114(89)90194-2.
[31] M. Boczek, M. Kaluszka. (2016). On Carlson’s inequality for Sugeno and Choquet integrals. Soft Computing.20(7):2513-2519. DOI: 10.1016/0165-0114(89)90194-2.
[32] K. B. Stolarsky. (1991). From Wythoff's Nim to Chebyshev's inequality. The American Mathematical Monthly.98(10):889-900. DOI: 10.1016/0165-0114(89)90194-2.
[33] P. S. Bullen. (1998). A Dictionary of Inequalities. DOI: 10.1016/0165-0114(89)90194-2.
[34] Y. Ouyang, R. Mesiar, H. Agahi. (2010). An inequality related to Minkowski type for Sugeno integrals. Information Sciences.180(14):2793-2801. DOI: 10.1016/0165-0114(89)90194-2.
[35] E. Klement, R. Mesiar, E. Pap. (2000). Triangular Norms. DOI: 10.1016/0165-0114(89)90194-2.
[36] A. De Waegenaere, P. P. Wakker. (2001). Nonmonotonic Choquet integrals. Journal of Mathematical Economics.36(1):45-60. DOI: 10.1016/0165-0114(89)90194-2.
[37] E. P. Klement, S. Weber. (1991). Generalized measures. Fuzzy Sets and Systems.40(2):375-394. DOI: 10.1016/0165-0114(89)90194-2.
[38] I. Stajner-Papuga, T. Grbić, M. Dankova. (2009). Pseudo-Riemann-Stieltjes integral. Information Sciences.179(17):2923-2933. DOI: 10.1016/0165-0114(89)90194-2.
[39] R. J. Aumann, L. S. Shapley. (1974). Values of Non-Atomic Games. DOI: 10.1016/0165-0114(89)90194-2.
[40] T. Murofushi, M. Sugeno, M. Machida. (1994). Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets and Systems.64(1):73-86. DOI: 10.1016/0165-0114(89)90194-2.
[41] J. Shalev. (1997). Loss aversion in a multi-period model. Mathematical Social Sciences.33(3):203-226. DOI: 10.1016/0165-0114(89)90194-2.
[42] L. Maligranda, J. E. Pecaric, L. E. Persson. (1995). Stolarsky's inequality with general weights. Proceedings of the American Mathematical Society.123(7):2113-2118. DOI: 10.1016/0165-0114(89)90194-2.
[43] T. Grbić, I. Štajner-Papuga, M. Štrboja. (2011). An approach to pseudo-integration of set-valued functions. Information Sciences.181(11):2278-2292. DOI: 10.1016/0165-0114(89)90194-2.
[44] E. Pap, M. Štrboja. (2010). Generalization of the Jensen inequality for pseudo-integral. Information Sciences.180(4):543-548. DOI: 10.1016/0165-0114(89)90194-2.
[45] C. Sheng, J. Shi, Y. Ouyang. (2011). Chebyshev's inequality for Choquet-like integral. Applied Mathematics and Computation.217(22):8936-8942. DOI: 10.1016/0165-0114(89)90194-2.
[46] P. S. Bullen. (2003). Handbook of Means and Their Inequalities. DOI: 10.1016/0165-0114(89)90194-2.
[47] T. Grbic, S. Medic, A. Perovic, M. Paskota. et al.(2016). Inequalities of the Chebyshev type based on pseudo-integrals. Fuzzy Sets and Systems.289:16-32. DOI: 10.1016/0165-0114(89)90194-2.
[48] L. C. Jang, B. M. Kil, Y. K. Kim, J. S. Kwon. et al.(1997). Some properties of Choquet integrals of set-valued functions. Fuzzy Sets and Systems.91(1):95-98. DOI: 10.1016/0165-0114(89)90194-2.
[49] E. Pap, N. Ralević. (1998). Pseudo-Laplace transform. Nonlinear Analysis: Theory, Methods & Applications.33(5):533-550. DOI: 10.1016/0165-0114(89)90194-2.
[50] B. Daraby. (2012). Generalization of the Stolarsky type inequality for pseudo-integrals. Fuzzy Sets and Systems.194:90-96. DOI: 10.1016/0165-0114(89)90194-2.
[51] E. Pap. (1997). Decomposable measures and nonlinear equations. Fuzzy Sets and Systems.92(2):205-221. DOI: 10.1016/0165-0114(89)90194-2.
[52] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano. (2007). A Jensen type inequality for fuzzy integrals. Information Sciences.177(15):3192-3201. DOI: 10.1016/0165-0114(89)90194-2.
[53] E. Pap. (1993). g-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.23:145-150. DOI: 10.1016/0165-0114(89)90194-2.
[54] D.-Q. Li, X.-Q. Song, T. Yue, Y.-Z. Song. et al.(2014). Generalization of the Lyapunov type inequality for pseudo-integrals. Applied Mathematics and Computation.241:64-69. DOI: 10.1016/0165-0114(89)90194-2.
[55] M. Strboja, T. Grbic, I. Stajner-Papuga, G. Grujic. et al.(2013). Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions. Fuzzy Sets and Systems.222:18-32. DOI: 10.1016/0165-0114(89)90194-2.
[56] H. Agahi, R. Mesiar. (2015). On Cauchy-Schwarz’S Inequality for Choquet-Like Integrals without the Comonotonicity Condition. DOI: 10.1016/0165-0114(89)90194-2.
[57] R. Mesiar, Y. Ouyang. (2009). General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets and Systems.160(1):58-64. DOI: 10.1016/0165-0114(89)90194-2.
[58] B. Girotto, S. Holzer. (2011). Chebyshev type inequality for Choquet integral and comonotonicity. International Journal of Approximate Reasoning.52(8):1118-1123. DOI: 10.1016/0165-0114(89)90194-2.
文献评价指标
浏览 8次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次