首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-01-02
Developing Smart Measurement Device to Measure Kinetic Friction Coefficients of Bi-Tilt Isolator
Research Article
Ming-Hsiang Shih 1 Wen-Pei Sung 2
Show affiliations
DOI:10.1155/2019/4392506
Received 2018-10-01, accepted for publication 2018-11-22, Published 2018-11-22
PDF
摘要

A sliding vibration isolation system, affected by a kinetic friction force, provides a flexible or energy dissipation system for a structure. The kinetic friction coefficient of the contact surfaces between the moving parts changes with the relative moving velocity of the two contact surfaces. In this study, a smart measuring device is proposed to measure the kinetic friction coefficients of materials. The Arduino boards Arduino Nano, Arduino MPU-9250, and Arduino SD modules were combined to create this proposed smart device and mounted on three aluminum extrusions constructed as a horizontal platform. Then, varying amounts of steel gaskets were applied to adjust the various slopes for sliding tests. The time history of the acceleration and displacement responses of test object movements in the sliding process were respectively, recorded and detected by this proposed smart measuring device and the digital image correlation method (DIC). Statistical analyses of all test responses were used to derive the relationship of velocity to kinetic friction coefficient. Test and analysis results showed that (1) the relationship of velocity to kinetic friction coefficient for the conditions of mild lubrication and no lubrication displayed a trend of first decreasing and then increasing with increasing speed, respectively and (2) the relationship of velocity to kinetic friction coefficient for the condition of full lubrication revealed that the kinetic friction coefficient decreased with increasing speed. Test results demonstrated that this proposed smart measurement device, which is low in price and easy to assemble, can easily measure the kinetic friction coefficient of a material under various lubrication conditions.

授权许可

Copyright © 2019 Ming-Hsiang Shih and Wen-Pei Sung. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Wen-Pei Sung.Dept. of Landscape Architecture, Integrated Research Center for Green Living Technologies, National Chin-Yi University of Technology, Taichung 41170, Taiwan, ncut.edu.tw.wps@ncut.edu.tw

推荐引用方式

Ming-Hsiang Shih,Wen-Pei Sung. Developing Smart Measurement Device to Measure Kinetic Friction Coefficients of Bi-Tilt Isolator. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[2] M. D. Symans, M. C. Constantinou. (1997). Seismic testing of a building structure with a semi-active fluid damper control system. Earthquake Engineering & Structural Dynamics.26(7):759-777. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[3] F. Palacios-Quiñonero, J. Rubió-Massegú, J. M. Rossell, H. R. Karimi. et al.(2012). Semiactive-passive structural vibration control strategy for adjacent structures under seismic excitation. Journal of the Franklin Institute.349(10):3003-3026. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[4] . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[5] M. H. Shih, W. P. Sung, C. Y. Ho. (2018). Experimental validation of numerical model for Bi-Tilt-Isolator. Shock and Vibration.2018-12. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[6] . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[7] J. Moran, T. Sucharitakul. Variations in dry sliding friction coefficients with velocity, recent advances on mechanics, materials, mechanical engineering and chemical engineering. :181-194. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[8] K. Hiramoto, T. Matsuoka, K. Sunakoda. (2013). Simultaneous optimal design of the structural model for the semi-active control design and the model-based semi-active control. Structural Control and Health Monitoring.21(4):522-541. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[9] N. Kurata, T. Kobori, M. Takahashi, N. Niwa. et al.(1999). Actual seismic response controlled building with semi-active damper system. Earthquake Engineering & Structural Dynamics.28(11):1427-1447. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[10] S. Pourzeynali, P. Jooei. (2013). Semi-active control of building structures using variable stiffness device and fuzzy logic. International Journal of Engineering, Transactions A: Basics.26(10):1169-1182. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[11] G. W. Housner, L. A. Bergman, T. K. Caughey. (1997). Structural control: past, present, and future. Journal of Engineering Mechanics.123(9):897-971. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[12] J. T. P. Yao. (1972). Concept of structural control. Journal of the Structural Division.1972:1567-1574. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[13] S. H. Tung, M. H. Shih, W. P. Sung. (2014). Applying the digital-image-correlation technique to measure the deformation of an old building’s column retrofitted with steel plate in an in-situ pushover test. Sadhana.39(3):699-711. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[14] K. Liu, L.-X. Chen, G.-P. Cai. (2011). Active control of a nonlinear and hysteretic building structure with time delay. Structural Engineering and Mechanics.40(3):431-451. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[15] W.-R. Chang, I.-J. Kim, D. P. Manning, Y. Bunterngchit. et al.(2010). The role of surface roughness in the measurement of slipperiness. Ergonomics.44:1200-1216. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[16] M. H. Shih, W. P. Sung. (2014). Developing dynamic digital image correlation technique to monitor structural damage of old buildings under external excitation. Shock and Vibration.2014-15. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[17] . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[18] X. Zeng, Z. Peng, L. Mo, G. Y. Su. et al.Active control based on prediction of structural vibration feedback. 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[19] N. Caterino, M. Spizzuoco, J. Londoño, A. Occhiuzzi. et al.(2014). Experimental issues in testing a semiactive technique to control earthquake induced vibration. Modelling and Simulation in Engineering.2014-11. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[20] R. L. Brauer. (2017). Safety and Health for Engineers. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[21] B. F. Spencer, S. Nagarajaiah. (2003). State of the art of structural control. Journal of Structural Engineering.129(7):845-856. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[22] V. Gattulli, M. Lepidi, F. Potenza. (2010). Seismic protection of frame structures via semi-active control: modeling and implementation issues. Earthquake Engineering and Engineering Vibration.8(4):627-645. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[23] N. R. Fisco, H. Adeli. (2011). Smart structures: Part I-Active and semi-active control. Scientia Iranica.18(3A):275-284. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[24] L. L. Chung, R. C. Lin, T. T. Soong, A. M. Reinhorn. et al.(1989). Experimental study of active control for MDOF seismic structures. Journal of Engineering Mechanics.115(8):1609-1627. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[25] G. J. Hiemenz, Y. T. Choi, N. M. Wereley. (2003). Seismic control of civil structures utilizing semi-active MR braces. Computer-Aided Civil and Infrastructure Engineering.18(1):31-44. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[26] R. B. Salic, M. A. Garevski, Z. V. Milutinovic. Response of lead-rubber bearing isolated structure. . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[27] B. Bridget Cunningham. (2015). Using lead rubber bearings in base isolation systems. . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[28] S. Iwata, H. Iemura, A. Honda, K. Sakai. et al.Ybrid earthquake loading test (pseudo-dynamic test) of bi-directional base isolation bearing for a large pedestrian bridge. . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[29] L. C. Robert, R. S. Willian, P. G. Gary. (1998). Adaptive Structures Dynamics & Control. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[30] . DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
[31] R. S. Jangid. (2007). Optimum lead-rubber isolation bearings for near-fault motions. Engineering structures.29(10):2503-2513. DOI: 10.1061/(asce)0733-9399(1997)123:9(897).
文献评价指标
浏览 20次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次