首页 » 文章 » 文章详细信息
Advanced Science Volume 5 ,Issue 12 ,2018-10-31
Iodine‐Optimized Interface for Inorganic CsPbI2Br Perovskite Solar Cell to Attain High Stabilized Efficiency Exceeding 14%
Communications
Jingru Zhang 1 Zhiwen Jin 1 , 2 Lei Liang 1 Haoran Wang 1 Dongliang Bai 1 Hui Bian 1 Kang Wang 1 Qian Wang 1 , 2 Ningyi Yuan 3 Jianning Ding 3 Shengzhong (Frank) Liu 1 , 4
Show affiliations
DOI:10.1002/advs.201801123
Received 2018-07-15,
PDF
摘要

Abstract Recently, inorganic CsPbI2Br perovskite is attracting ever‐increasing attention for its outstanding optoelectronic properties and ambient phase stability. Here, an efficient CsPbI2Br perovskite solar cell (PSC) is developed by: 1) using a dimension‐grading heterojunction based on a quantum dots (QDs)/bulk film structure, and 2) post‐treatment of the CsPbI2Br QDs/film with organic iodine salt to form an ultrathin iodine‐ion–enriched perovskite layer on the top of the perovskite film. It is found that the above procedures generate proper band edge bending for improved carrier collection, resulting in effectively decreased recombination loss and improved hole extraction efficiency. Meanwhile, the organic capping layer from the iodine salt also surrounds the QDs and tunes the surface chemistry for further improved charge transport at the interface. As a result, the champion device achieves long‐term stabilized power conversion efficiency beyond 14%.

关键词

solar cells;perovskite;iodine;inorganic;efficiency;CsPbIBr

授权许可

© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

图表

a) Schematic diagram of the CsPbI2Br QDs/film with FAI post‐treatment. b) Schematic device structure. c) Energy‐level diagram.

SEM images of the a–d) CsPbI2Br films and e–h) CsPbI2Br QDs/films soaked in FAI EA solution for different times. The insets are the results of water droplet contact angle measurements.

Performance comparison of the a–d) CsPbI2Br films and e–h) CsPbI2Br QDs/films soaked in FAI EA solution for different times: a,d) XRD patterns; b,f) absorption spectra; c,g) PL spectra; d,h) VB XPS spectra.

Comparison of the characteristics of the CsPbI2Br films soaked in FAI EA solution for different times: a) XPS spectra; b) atomic ratio evolution of I/Pb, Br/Pb, N/Pb, and I/Br; c–f) XPS spectra for Cs 3d5, Pb 4f, Br 3d, and I 3d5; g) PL spectra for the films before EA washing for different soaking times; h) PL spectra of the films after EA washing for different soaking times; i) decay curves.

Performance for the champion device: a) J–V characteristics under both the reverse and forward scan directions; b) EQE and the integrated product of the EQE curve with the AM1.5G photon flux; c) PCE and J measured as a function of time for the cells biased at 1.08 V; d) PCE distribution histogram of 50 devices; e) J–V characteristics of the best‐performance half and full PSCs without any encapsulation after storage for one month (25 °C and RH = 25–35%); f) Long‐term stability of the best‐performing device stored without encapsulation (25 °C and RH = 25–35%).

Table 1

通讯作者

1. Zhiwen Jin.Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China;School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China.jinzhiwen@snnu.edu.cn
2. Qian Wang.Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China;School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China.jinzhiwen@snnu.edu.cn
3. Shengzhong (Frank) Liu.Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China;Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.jinzhiwen@snnu.edu.cn

推荐引用方式

Jingru Zhang,Zhiwen Jin,Lei Liang,Haoran Wang,Dongliang Bai,Hui Bian,Kang Wang,Qian Wang,Ningyi Yuan,Jianning Ding,Shengzhong (Frank) Liu. Iodine‐Optimized Interface for Inorganic CsPbI2Br Perovskite Solar Cell to Attain High Stabilized Efficiency Exceeding 14%. Advanced Science ,Vol.5, Issue 12(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.‐G. Zhang, Y. Li, S. Liu, Adv. Energy Mater. 2018, 8, 1701757.
[2] W. Zhou, Y. Zhao, X. Zhou, R. Fu, Q. Li, Y. Zhao, K. Liu, D. Yu, Q. Zhao, J. Phys. Chem. Lett. 2017, 8, 4122.
[3] Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, S. Liu, Adv. Energy Mater. 2018, 8, 1800007.
[4] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, K. Durose, ACS Appl. Mater. Interfaces 2018, 10, 3750.
[5] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
[6] H. Wang, H. Bian, Z. Jin, L. Liang, D. Bai, Q. Wang, S. F. Liu, Sol. RRL 2018, https://doi.org/10.1002/solr.201800216.
[7] E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Sci. Adv. 2017, 3, eaao4204.
[8] D. Bai, H. Bian, Z. Jin, H. Wang, L. Meng, Q. Wang, S. Liu, Nano Energy 2018, 52, 408.
[9] S. Zhang, S. Wu, W. Chen, H. Zhu, Z. Xiong, Z. Yang, C. Chen, R. Chen, L. Han, W. Chen, Mater. Today Energy 2018, 8, 125.
[10] X. Wang, H. Liu, F. Zhou, J. Dahan, X. Wang, Z. Li, W. Shen, ACS Appl. Mater. Interfaces 2018, 10, 835.
[11] L. Pang, Y. Yao, Q. Wang, X. Zhang, Z. Jin, S. Liu, Part. Part. Syst. Charact. 2018, 35, 1700363.
[12] C. Xiao, Z. Li, H. Guthrey, J. Moseley, Y. Yang, S. Wozny, H. Moutinho, B. To, J. J. Berry, B. Gorman, Y. Yan, K. Zhu, M. Al‐Jassim, J. Phys. Chem. C 2015, 119, 26904.
[13] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1502458.
[14] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H.‐G. Boyen, Adv. Energy Mater. 2015, 5, 1500477.
[15] V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Nat. Commun. 2014, 5, 3586.
[16] Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao, Y. Li, S. Liu, ACS Energy Lett. 2017, 2, 1479.
[17] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Sci. Adv. 2017, 3, e1700841.
[18] J.‐W. Lee, D.‐H. Kim, H.‐S. Kim, S.‐W. Seo, S. M. Cho, N.‐G. Park, Adv. Energy Mater. 2015, 5, 1501310.
[19] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688.
[20] Q. Ma, S. Huang, S. Chen, M. Zhang, C. F. J. Lau, M. N. Lockrey, H. K. Mulmudi, Y. Shan, J. Yao, J. Zheng, X. Deng, K. Catchpole, M. A. Green, A. W. Y. Ho‐Baillie, J. Phys. Chem. C 2017, 121, 19642.
[21] J. K. Nam, M. S. Jung, S. U. Chai, Y. J. Choi, D. Kim, J. H. Park, J. Phys. Chem. Lett. 2017, 8, 2936.
[22] H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. García de Arquer, J. Z. Fan, R. Quintero‐Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.‐H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.
[23] J. Jiang, Z. Jin, F. Gao, J. Sun, Q. Wang, S. Liu, Adv. Sci. 2018, 5, 1800474.
[24] Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, L. Manna, Nat. Energy 2017, 2, 16194.
[25] Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, Nat. Energy 2017, 2, 17135.
[26] C. Y. Chen, H. Y. Lin, K. M. Chiang, W. L. Tsai, Y. C. Huang, C. S. Tsao, H. W. Lin, Adv. Mater. 2017, 29, 1605290.
[27] X. Zhang, Q. Wang, Z. Jin, J. Zhang, S. Liu, Nanoscale 2017, 9, 6278.
[28] X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, Small 2017, 13, 1603996.
[29] R. F. Service, Science 2016, 351, 113.
[30] Y. Huang, W.‐J. Yin, Y. He, J. Phys. Chem. C 2018, 122, 1345.
[31] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, Adv. Sci. 2018, 5, 1700387.
[32] A. F. Akbulatov, S. Y. Luchkin, L. A. Frolova, N. N. Dremova, K. L. Gerasimov, I. S. Zhidkov, D. V. Anokhin, E. Z. Kurmaev, K. J. Stevenson, P. A. Troshin, J. Phys. Chem. Lett. 2017, 8, 1211.
[33] Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Joule 2017, 1, 371.
[34] S. Dastidar, S. Li, S. Y. Smolin, J. B. Baxter, A. T. Fafarman, ACS Energy Lett. 2017, 2, 2239.
[35] K. L. Svane, A. C. Forse, C. P. Grey, G. Kieslich, A. K. Cheetham, A. Walsh, K. T. Butler, J. Phys. Chem. Lett. 2017, 8, 6154.
[36] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, Nano Lett. 2017, 17, 2028.
[37] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, Science 2017, 356, 1376.
[38] J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, Adv. Energy Mater. 2018, 8, 1703246.
[39] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang, A. Ho‐Baillie, ACS Energy Lett. 2017, 2, 2319.
[40] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829.
[41] C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, J. Am. Chem. Soc. 2018, 140, 3825.
[42] J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem., Int. Ed. 2018, 57, 1.
[43] Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Adv. Mater. 2016, 28, 6734.
[44] S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, S. I. Seok, Science 2017, 356, 167.
[45] P. Umari, E. Mosconi, F. De Angelis, J. Phys. Chem. Lett. 2018, 9, 620.
[46] X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, Adv. Sci. 2018, 5, 1800474.
[47] H. Bian, D. Bai, Z. Jin, K. Wang, L. Liang, H. Wang, J. Zhang, Q. Wang, S. Liu, Joule 2018, 2, 1500.
[48] Y. Guo, Q. Wang, W. A. Saidi, J. Phys. Chem. C 2017, 121, 1715.
[49] D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, S. Liu, ACS Energy Lett. 2018, 3, 970.
[50] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15, 5635.
[51] R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746.
[52] Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276.
[53] J. Jiang, Z. Jin, J. Lei, Q. Wang, X. Zhang, J. Zhang, F. Gao, S. Liu, J. Mater. Chem. A 2017, 5, 9514.
[54] Y. Wang, T. Zhang, F. Xu, Y. Li, Y. Zhao, Sol. RRL 2018, 2, 1700180.
[55] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
[56] J. Liang, J. Liu, Z. Jin, Sol. RRL 2017, 1, 1700086.
[57] W. Zi, Z. Jin, S. Liu, B. Xu, J. Energy Chem. 2018, 27, 971.
[58] J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 14009.
[59] W. Ahmad, J. Khan, G. Niu, J. Tang, Sol. RRL 2017, 1, 1700048.
[60] C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, R. E. I. Schropp, Nano Energy 2017, 41, 75.