首页 » 文章 » 文章详细信息
Advanced Science Volume 5 ,Issue 12 ,2018-10-31
Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High‐Rate and Endurable Vanadium Redox Flow Batteries
Communications
Wei Ling 1 , 2 Qi Deng 1 , 3 Qiang Ma 1 , 2 Hong‐Rui Wang 1 Chun‐Jiao Zhou 1 Jian‐Kai Xu 1 Ya‐Xia Yin 2 Xiong‐Wei Wu 1 , 3 Xian‐Xiang Zeng 1 Yu‐Guo Guo 2
Show affiliations
DOI:10.1002/advs.201801281
Received 2018-08-05,
PDF
摘要

Abstract Vanadium redox flow batteries (VRFBs) are receiving increasing interest in energy storage fields because of their safety and versatility. However, the electrocatalytic activity of the electrode is a pivotal factor that still restricts the power and cycling capabilities of VRFBs. Here, a hierarchical carbon micro/nanonetwork (HCN) electrode codoped with nitrogen and phosphorus is prepared for application in VRFBs by cross‐linking polymerization of aniline and physic acid, and subsequent pyrolysis on graphite felt. Due to the hierarchical electron pathways and abundant heteroatom active sites, the HCN exhibits superior electrocatalysis toward the vanadium redox couples and imparts the VRFBs with an outstanding energy efficiency and extraordinary stability after 2000 cycles at 250 mA cm−2 and a discharge capacity of 10.5 mA h mL−1 at an extra‐large current density of 400 mA cm−2. Such a micro/nanostructure design will force the advancement of durable and high‐power VRFBs and other electrochemical energy storage devices.

关键词

vanadium redox flow batteries;high‐rate performance;hierarchical carbon micro/nanonetworks;durable cycle life;carbon electrodes

授权许可

© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

图表

Schematic diagram of the preparation process for the HCN. a) The low‐temperature polymerization of aniline monomers occurs on the GF with phytic acid as the crosslinking agent following a hydrothermal reaction; b) through a carbonization process, nitrogen and phosphorus codopants are introduced into the crosslinking carbon nanonetwork formed on the surface of GF; c) the equation corresponding to the crosslinking polymerization reaction.

Morphological characterization of the HCN by electron microscopy. SEM images of a,d) GF and b,e) the HCN at different magnifications; c,f) TEM image of the HCN; and g) elemental mapping images of C, O, N, and P for the HCN.

Composition and structural analysis of the HCN by spectroscopy. a) XRD pattern. b) Raman spectra. c) XPS survey scans with various element contents and fitting of the high‐resolution d) C 1s, e) O 1s, and f) N 1s spectra of GF, CA‐GF, and the HCN. g) High‐resolution XPS P 2p spectrum of HCN. The relative contents of h) oxygen and i) nitrogen functional groups in GF, CA‐GF, and the HCN.

Electrochemical performance measurements. a) The positive and b) negative CV curves of the GF, CA‐GF, and HCN in 3 mol L−1 H2SO4 solution containing 0.1 mol L−1 VOSO4. c) Plots of the oxidation and reduction peak current density versus the square root of scan rate for GF, CA‐GF, and HCN. d) Nyquist plots of the GF, CA‐GF, and HCN in 3 mol L−1 H2SO4 solution containing 0.1 mol L−1 VOSO4.

Performance tests for VRFBs. a) Charge–discharge curves of the GF and HCN at 250 mA cm−2, b) discharge specific capacity, c) CE and VE, d) EE of GF and HCN at different current densities, and e) cycling performances of VRFBs based on GF and HCN electrodes at 250 mA cm−2.

VRFB performance comparison with previous reports. Comparative evaluation of a) EE and b) lifespan of VRFBs among recently reported works.

通讯作者

1. Xiong‐Wei Wu.College of Science, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China;Hunan Province Yin Feng New Energy Co. Ltd., Changsha, Hunan, 410000, P. R. China.wxwcsu05@aliyun.com
2. Xian‐Xiang Zeng.College of Science, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.wxwcsu05@aliyun.com
3. Yu‐Guo Guo.CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.wxwcsu05@aliyun.com

推荐引用方式

Wei Ling,Qi Deng,Qiang Ma,Hong‐Rui Wang,Chun‐Jiao Zhou,Jian‐Kai Xu,Ya‐Xia Yin,Xiong‐Wei Wu,Xian‐Xiang Zeng,Yu‐Guo Guo. Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High‐Rate and Endurable Vanadium Redox Flow Batteries. Advanced Science ,Vol.5, Issue 12(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] K. Qu, Y. Zheng, X. Zhang, K. Davey, S. Dai, S. Z. Qiao, ACS Nano 2017, 11, 7293.
[2] X. Yue, S. Huang, J. Cai, Y. Jin, P. K. Shen, J. Mater. Chem. A 2017, 5, 7784.
[3] I.‐Y. Jeon, M. Choi, H.‐J. Choi, S.‐M. Jung, M.‐J. Kim, J.‐M. Seo, S.‐Y. Bae, S. Yoo, G. Kim, H. Y. Jeong, Nat. Commun. 2015, 6, 7123.
[4] M. Vujković, N. Gavrilov, I. Pašti, J. Krstić, J. Travas‐Sejdic, G. ćirić‐Marjanović, S. Mentus, Carbon 2013, 64, 472.
[5] D. M. Kabtamu, J.‐Y. Chen, Y.‐C. Chang, C.‐H. Wang, J. Power Sources 2017, 341, 270.
[6] Z. Zhang, J. Xi, H. Zhou, X. Qiu, Electrochim. Acta 2016, 218, 15.
[7] J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ACS Catal. 2015, 5, 5207.
[8] W. He, C. Jiang, J. Wang, L. Lu, Angew. Chem., Int. Ed. 2014, 53, 9503.
[9] Y. C. Chang, J. Y. Chen, D. M. Kabtamu, G. Y. Lin, N. Y. Hsu, Y. S. Chou, H. J. Wei, C. H. Wang, J. Power Sources 2017, 364, 1.
[10] Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu, J. Xi, Nano Energy 2018, 43, 55.
[11] Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 2018, 9, 1720.
[12] J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem., Int. Ed. 2015, 54, 9776.
[13] Y. Zhao, M. Li, Z. Yuan, X. Li, H. Zhang, I. F. Vankelecom, Adv. Funct. Mater. 2016, 26, 210.
[14] K. J. Kim, M.‐S. Park, Y.‐J. Kim, J. H. Kim, S. X. Dou, M. Skyllas‐Kazacos, J. Mater. Chem. A 2015, 3, 16913.
[15] S. Park, H. Kim, J. Mater. Chem. A 2015, 3, 12276.
[16] X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 2017, 46, 2660.
[17] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nano Lett. 2014, 14, 158.
[18] J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129.
[19] R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan, Q. Zhang, Angew. Chem., Int. Ed. 2017, 56, 7764.
[20] O. L. Li, S. Chiba, Y. Wada, G. Panomsuwan, T. Ishizaki, J. Mater. Chem. A 2017, 5, 2073.
[21] S. Liu, J. Tian, W. Lei, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. Al‐Youbi, X. Sun, Adv. Mater. 2012, 24, 2037.
[22] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ACS Appl. Mater. Interfaces 2016, 8, 15369.
[23] M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas‐Kazacos, T. M. Lim, Adv. Mater. Interfaces 2016, 3, 1500309.
[24] X. Lai, J. E. Halpert, D. Wang, Energy Environ. Sci. 2012, 5, 5604.
[25] K. J. Kim, M.‐S. Park, J.‐H. Kim, U. Hwang, N. J. Lee, G. Jeong, Y.‐J. Kim, Chem. Commun. 2012, 48, 5455.
[26] F. Wang, X. Wu, C. Li, Y. Zhu, L. Fu, Y. Wu, X. Liu, Energy Environ. Sci. 2016, 9, 3570.
[27] M. Park, J. Ryu, W. Wang, J. Cho, Nat. Rev. Mater. 2017, 2, 16080.
[28] S. Wang, X. Zhao, T. Cochell, A. Manthiram, J. Phys. Chem. Lett. 2012, 3, 2164.
[29] G. Wei, C. Jia, J. Liu, C. Yan, J. Power Sources 2012, 220, 185.
[30] M. Park, Y.‐J. Jung, J. Kim, H. I. Lee, J. Cho, Nano Lett. 2013, 13, 4833.
[31] B. Luo, D. Ye, L. Wang, Adv. Sci. 2017, 4, 1700104.
[32] G. Hu, M. Jing, D.‐W. Wang, Z. Sun, C. Xu, W. Ren, H.‐M. Cheng, C. Yan, X. Fan, F. Li, Energy Storage Mater. 2018, 13, 66.
[33] B. Dunn, H. Kamath, J.‐M. Tarascon, Science 2011, 334, 928.
[34] Q. Ma, X.‐X. Zeng, C. Zhou, Q. Deng, P.‐F. Wang, T.‐T. Zuo, X.‐D. Zhang, Y.‐X. Yin, X. Wu, L.‐Y. Chai, Y.‐G. Guo, ACS Appl. Mater. Interfaces 2018, 10, 22381.
[35] R. Zhang, N. W. Li, X. B. Cheng, Y. X. Yin, Q. Zhang, Y. G. Guo, Adv. Sci. 2017, 4, 1600445.
[36] D. M. Kabtamu, J.‐Y. Chen, Y.‐C. Chang, C.‐H. Wang, J. Mater. Chem. A 2016, 4, 11472.
[37] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochim. Acta 2013, 89, 429.
[38] L. C. King, J. C. van den Bergh, Nat. Energy 2018, 3, 334.
[39] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Nano Lett. 2013, 13, 1330.
[40] M. E. Lee, H.‐J. Jin, Y. S. Yun, RSC Adv. 2017, 7, 43227.
[41] P. P. Patel, M. K. Datta, O. I. Velikokhatnyi, R. Kuruba, K. Damodaran, P. Jampani, B. Gattu, P. M. Shanthi, S. S. Damle, P. N. Kumta, Sci. Rep. 2016, 6, 28367.
[42] Z. He, L. Liu, C. Gao, Z. Zhou, X. Liang, Y. Lei, Z. He, S. Liu, RSC Adv. 2013, 3, 19774.
[43] C. Li, B. Xie, J. Chen, J. He, Z. He, RSC Adv. 2017, 7, 13184.
[44] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Energy Environ. Sci. 2011, 4, 4710.
[45] R. Nandan, K. Nanda, J. Mater. Chem. A 2017, 5, 16843.
[46] D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127.
[47] J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, ACS Nano 2013, 7, 4764.
[48] Q. Deng, P. Huang, W. X. Zhou, Q. Ma, N. Zhou, H. Xie, W. Ling, C. J. Zhou, Y. X. Yin, X. W. Wu, Adv. Energy Mater. 2017, 7, 1700461.
[49] P. Hu, X. Wang, T. Wang, L. Chen, J. Ma, Q. Kong, S. Shi, G. Cui, Adv. Sci. 2016, 3, 1600112.
[50] N. Pour, D. G. Kwabi, T. Carney, R. M. Darling, M. L. Perry, Y. Shao‐Horn, J. Phys. Chem. C 2015, 119, 5311.
[51] M. Park, J. Ryu, Y. Kim, J. Cho, Energy Environ. Sci. 2014, 7, 3727.
[52] A. Ejigu, M. Edwards, D. A. Walsh, ACS Catal. 2015, 5, 7122.
[53] W. Li, Z. Zhang, Y. Tang, H. Bian, T. W. Ng, W. Zhang, C. S. Lee, Adv. Sci. 2016, 3, 1500276.
[54] L. Wu, Y. Shen, L. Yu, J. Xi, X. Qiu, Nano Energy 2016, 28, 19.
[55] B. Sun, M. Skyllas‐Kazacos, Electrochim. Acta 1992, 37, 2459.
[56] P. Huang, W. Ling, H. Sheng, Y. Zhou, X. Wu, X.‐X. Zeng, X. Wu, Y.‐G. Guo, J. Mater. Chem. A 2018, 6, 41.
[57] M. Schnucklake, S. Kuecken, A. Fetyan, J. Schmidt, A. Thomas, C. Roth, J. Mater. Chem. A 2017, 5, 25193.
[58] J. Kim, H. Lim, J.‐Y. Jyoung, E.‐S. Lee, J. S. Yi, D. Lee, Electrochim. Acta 2017, 245, 724.
[59] J. Liu, Z. A. Wang, X. W. Wu, X. H. Yuan, J. P. Hu, Q. M. Zhou, Z. H. Liu, Y. P. Wu, J. Power Sources 2015, 299, 301.
[60] J. Kim, H. Lim, J.‐Y. Jyoung, E.‐S. Lee, J. S. Yi, D. Lee, Carbon 2017, 111, 592.
[61] B. Sun, M. Skyllas‐Kazacos, Electrochim. Acta 1992, 37, 1253.
[62] G. Xiong, P. He, Z. Lyu, T. Chen, B. Huang, L. Chen, T. S. Fisher, Nat. Commun. 2018, 9, 790.
文献评价指标
浏览 9次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次