首页 » 文章 » 文章详细信息
Ecology and Evolution Volume 8 ,Issue 23 ,2018-11-26
Longitudinal variation in fish prey utilization, trophic guilds, and indicator species along a large subtropical river, China
ORIGINAL RESEARCH
Sai Wang 1 , 2 Tuan‐Tuan Wang 3 Jin‐Peng Tang 1 Lin Wang 1 Yang Yang 1 , 2 Hsing‐Juh Lin 4 Hao‐Yen Chang 4 Xing‐An Zhou 1 Xing Li 1 Ming Wang 1
Show affiliations
DOI:10.1002/ece3.4577
Received 2017-10-31, accepted for publication 2018-09-03, Published 2018-09-03
PDF
摘要

Abstract Due to the heterogeneous distribution of resources along large rivers, understanding prey utilization by basin‐scale fish assemblages remains a challenge, and thus, recognizing regional fish trophic guilds and indicator species is important. We analyzed the stomach contents of 96 fish species along the subtropical East River in China and identified 8 prey items (29 subcategories). Site‐specific differences in fish diet composition (DC) revealed longitudinal shifts in utilized prey taxa, from upstream lotic to downstream semi‐lentic items, and these were characterized by a decrease in the proportions of epilithic diatoms and aquatic insect larvae (Ephemeroptera and Chironomidae) accompanied by an increase in bivalves (Corbicula and Limnoperna), shrimps and fishes, and organic sediments. The relative prey consumption weighted by fish abundance and biomass indicated that decreasing insect consumption and increasing detritus consumption were two fundamental vectors governing fish‐centered feeding pathways. Seventeen prey‐oriented fish guilds that were clustered based on DC matrix determined the spatial variation in the fish trophic structure. The cumulative presence of (a) upstream guilds reliant on insects and epiphytes, (b) midstream guilds reliant on hydrophytes, molluscs, and nekton, and (c) downstream guilds reliant on detritus, annelids, and plankton resulted in a longitudinal increase in guild richness, but this continuity was interrupted near the industrialized estuary. The most abundant 28 fish species across the guilds were selected as trophic indicator species; their spatial distribution significantly (p 80% of the environmental and prey variables identified. These species signified the availability of predator–prey links in distinct habitats and the key environmental factors supporting these links. With a high contribution (>51%) of exotic species, an increase in detritivores downstream distinguishes the subtropical East River from temperate rivers. Particularly, in the disturbed lower reaches, the dominance of detritivores prevailed over the predicted increase in other feeding groups (e.g., omnivores and carnivores).

关键词

trophic structure;stomach content analysis;prey taxa;predator–prey link;fish feeding habit;East River

授权许可

© 2018 Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

1. Yang Yang.Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China;Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education Engineering, Jinan University, Guangzhou, China.yangyang@jnu.edu.cn
2. Hsing‐Juh Lin.Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan.yangyang@jnu.edu.cn

推荐引用方式

Sai Wang,Tuan‐Tuan Wang,Jin‐Peng Tang,Lin Wang,Yang Yang,Hsing‐Juh Lin,Hao‐Yen Chang,Xing‐An Zhou,Xing Li,Ming Wang. Longitudinal variation in fish prey utilization, trophic guilds, and indicator species along a large subtropical river, China. Ecology and Evolution ,Vol.8, Issue 23(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137. https://doi.org/10.1139/f80-017.
[2] Vander Zanden, M. J., Olden, J. D., & Gratton, C. (2006). Food‐web approaches in restoration ecology. In , M. A. Palmer, & J. B. Zedler (Eds.), Foundations of Restoration Ecology (pp. 165–189). Washington, USA: Island Press.
[3] Hellawell, J., & Abel, R. (1971). A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology, 3, 29–37. https://doi.org/10.1111/j.1095-8649.1971.tb05903.x.
[4] Petry, A., & Schulz, U. (2006). Longitudinal changes and indicator species of the fish fauna in the subtropical Sinos River, Brazil. Journal of Fish Biology, 69, 272–290. https://doi.org/10.1111/j.1095-8649.2006.01110.x.
[5] Adite, A., & Winemiller, K. O. (1997). Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa. Ecoscience, 4, 6–23. https://doi.org/10.1080/11956860.1997.11682371.
[6] Oberdorff, T., Pont, D., Hugueny, B., & Chessel, D. (2001). A probabilistic model characterizing fish assemblages of French rivers: A framework for environmental assessment. Freshwater Biology, 46, 399–415. https://doi.org/10.1046/j.1365-2427.2001.00669.x.
[7] Peres‐Neto, P., Bizerril, P., & Iglesias, R. (1995). An overview of some aspects of river ecology: A case study on fish assemblages distribution in an eastern Brazilian coastal river. Oecologia Australis, 1, 317–334.
[8] Baker, R., Buckland, A., & Sheaves, M. (2014). Fish gut content analysis: Robust measures of diet composition. Fish and Fisheries, 15, 170–177. https://doi.org/10.1111/faf.12026.
[9] Angermeier, P., & Karr, J. (1983). Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes, 9, 117–135. https://doi.org/10.1007/BF00690857.
[10] Hoeinghaus, D. J., Winemiller, K. O., & Birnbaum, J. S. (2007). Local and regional determinants of stream fish assemblage structure: Inferences based on taxonomic vs. functional groups. Journal of Biogeography, 34, 324–338. https://doi.org/10.1111/j.1365-2699.2006.01587.x.
[11] Thorp, J. H., & Delong, M. D. (1994). The riverine productivity model: An heuristic view of carbon sources and organic processing in large river ecosystems. Oikos, 70, 305–308. https://doi.org/10.2307/3545642.
[12] Hoeinghaus, D. J., Winemiller, K. O., & Agostinho, A. A. (2007). Landscape‐scale hydrologic characteristics differentiate patterns of carbon flow in large‐river food webs. Ecosystems, 10, 1019–1033. https://doi.org/10.1007/s10021-007-9075-2.
[13] Barbour, M. T., Gerritsen, J., Snyder, B., & Stribling, J. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers. Washington, USA: USEPA.
[14] Wolff, L. L., Carniatto, N., & Hahn, N. S. (2013). Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil. Neotropical Ichthyology, 11, 375–386. https://doi.org/10.1590/S1679-62252013005000005.
[15] Humphries, P., Keckeis, H., & Finlayson, B. (2014). The river wave concept: Integrating river ecosystem models. BioScience, 64, 870–882. https://doi.org/10.1093/biosci/biu130.
[16] Zeni, J. O., & Casatti, L. (2014). The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia, 726, 259–270. https://doi.org/10.1007/s10750-013-1772-6.
[17] Horwitz, R. J. (1978). Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs, 48, 307–321. https://doi.org/10.2307/2937233.
[18] Poff, N. L., & Allan, J. D. (1995). Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76, 606–627. https://doi.org/10.2307/1941217.
[19] Pouilly, M., Barrera, S., & Rosales, C. (2006). Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia). Journal of Fish Biology, 68, 137–156. https://doi.org/10.1111/j.0022-1112.2006.00883.x.
[20] Romanuk, T. N., Jackson, L. J., Post, J. R., McCauley, E., & Martinez, N. D. (2006). The structure of food webs along river networks. Ecography, 29, 3–10. https://doi.org/10.1111/j.2005.0906-7590.04181.x.
[21] Chang, H.‐Y., Wu, S.‐H., Shao, K.‐T., Kao, W.‐Y., Maa, C.‐J.‐W., Jan, R.‐Q., … Lin, H.‐J. (2012). Longitudinal variation in food sources and their use by aquatic fauna along a subtropical river in Taiwan. Freshwater Biology, 57, 1839–1853. https://doi.org/10.1111/j.1365-2427.2012.02843.x.
[22] Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R. New York, NY: Springer.
[23] Buchheister, A., & Latour, R. J. (2015). Diets and trophic‐guild structure of a diverse fish assemblage in Chesapeake Bay, USA. Journal of Fish Biology, 86, 967–992. https://doi.org/10.1111/jfb.12621.
[24] Legendre, P., & Legendre, L. F. (2012). Numerical ecology, 3rd ed. New York, NY: Elsevier.
[25] Wang, Z. Y., Lee, J. H. W., Cheng, D. S., & Duan, X. H. (2008). Benthic invertebrates investigation in the East River and habitat restoration strategies. Journal of Hydro‐Environment Research, 2, 19–27. https://doi.org/10.1016/j.jher.2008.05.005.
[26] Logez, M., Bady, P., Melcher, A., & Pont, D. (2013). A continental‐scale analysis of fish assemblage functional structure in European rivers. Ecography, 36, 80–91. https://doi.org/10.1111/j.1600-0587.2012.07447.x.
[27] Hyslop, E. (1980). Stomach contents analysis‐a review of methods and their application. Journal of Fish Biology, 17, 411–429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x.
[28] Matveev, V., & Robson, B. J. (2014). Aquatic food web structure and the flow of carbon. Freshwater Reviews, 7, 1–24. https://doi.org/10.1608/FRJ-7.1.720.
[29] Welcomme, R. L., Winemiller, K. O., & Cowx, I. G. (2006). Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Research and Applications, 22, 377–396. https://doi.org/10.1002/rra.914.
[30] Davies, P. M., Bunn, S. E., & Hamilton, S. K. (2008). Primary production in tropical streams and rivers. In (Ed.), Tropical stream ecology (pp. 23–42). London, UK: Academic Press.
[31] Lee, J. H. W., Wang, Z. Y., Thoe, W., & Cheng, D. S. (2007). Integrated physical and ecological management of the East River. Water Science & Technology: Water Supply, 7, 81–91. https://doi.org/10.2166/ws.2007.043.
[32] Sheldon, A. L. (1968). Species diversity and longitudinal succession in stream fishes. Ecology, 49, 193–198. https://doi.org/10.2307/1934447.
[33] Seegert, G., Vondruska, J., Perry, E., & Dixon, D. (2013). Longitudinal variation in the Ohio River fish community. North American Journal of Fisheries Management, 33, 539–548. https://doi.org/10.1080/02755947.2013.785990.
[34] Schlosser, I. J. (1991). Stream fish ecology: A landscape perspective. BioScience, 41, 704–712. https://doi.org/10.2307/1311765.
[35] Schiemer, F. (2000). Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia, 422–423, 271–278. https://doi.org/10.1023/A:1017086703551.
[36] Eick, D., & Thiel, R. (2014). Fish assemblage patterns in the Elbe estuary: Guild composition, spatial and temporal structure, and influence of environmental factors. Marine Biodiversity, 44, 559–580. https://doi.org/10.1007/s1252.
[37] Lasne, E., Bergerot, B., Lek, S., & Laffaille, P. (2007). Fish zonation and indicator species for the evaluation of the ecological status of rivers: Example of the Loire basin (France). River Research and Applications, 23, 877–890. https://doi.org/10.1002/rra.1030.
[38] Karr, J. R. (1987). Biological monitoring and environmental assessment: A conceptual framework. Environmental Management, 11, 249–256. https://doi.org/10.1007/BF01867203.
[39] Elliott, M., Whitfield, A. K., Potter, I. C., Blaber, S. J. M., Cyrus, D. P., Nordlie, F. G., & Harrison, T. D. (2007). The guild approach to categorizing estuarine fish assemblages: A global review. Fish and Fisheries, 8, 241–268. https://doi.org/10.1111/j.1467-2679.2007.00253.x.
[40] Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream Fishes. BioScience, 52, 483–498. https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2.
[41] Flotemersch, J. E., Stribling, J. B., & Paul, M. J. (2006). Concepts and approaches for the bioassessment of non‐wadeable streams and rivers. Cincinnati, OH: Office of Research and Development, USEPA.
[42] Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6, 21–27. https://doi.org/10.1577/1548-8446(1981)006xxaaa0021:AOBIUFxxbbb2.0.CO;2.
[43] Tejerina‐Garro, F. L., Maldonado, M., Ibañez, C., Pont, D., Roset, N., & Oberdorff, T. (2005). Effects of natural and anthropogenic environmental changes on riverine fish assemblages: A framework for ecological assessment of rivers. Brazilian Archives of Biology and Technology, 48, 91–108. https://doi.org/10.1590/S1516-89132005000100013.
[44] Statzner, B., & Higler, B. (1985). Questions and comments on the river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1038–1044. https://doi.org/10.1139/f85-129.
[45] Moyle, P. B., & Senayake, F. R. (1984). Resource partitioning among the fishes of rainforest streams in Sri Lanka. Journal of Zoology, 202, 195–223. https://doi.org/10.1111/j.1469-7998.1984.tb05951.x.
[46] Minshall, G. W., Cummins, K. W., Petersen, R. C., Cushing, C. E., Bruns, D. A., Sedell, J. R., & Vannote, R. L. (1985). Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1045–1055. https://doi.org/10.1139/f85-130.
[47] Southerland, M. T., Rogers, G. M., Kline, M. J., Morgan, R. P., Boward, D. M., Kazyak, P. F., … Stranko, S. A. (2007). Improving biological indicators to better assess the condition of streams. Ecological Indicators, 7, 751–767. https://doi.org/10.1016/j.ecolind.2006.08.005.
[48] Aarts, B. W., & Nienhuis, P. (2003). Fish zonations and guilds as the basis for assessment of ecological integrity of large rivers. Hydrobiologia, 500, 157–178. https://doi.org/10.1023/A:1024638726162.
[49] Aarts, B. G. W., Van Den Brink, F. W. B., & Nienhuis, P. H. (2004). Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient. River Research and Applications, 20, 3–23. https://doi.org/10.1002/rra.720.
[50] Mazzoni, R., & Lobón‐Cerviá, J. (2000). Longitudinal structure, density and production rates of a neotropical stream fish assemblage: The river Ubatiba in the Serra do Mar, southeast Brazil. Ecography, 23, 588–602. https://doi.org/10.1111/j.1600-0587.2000.tb00178.x.
[51] Ibanez, C., Oberdorff, T., Teugels, G., Mamononekene, V., Lavoué, S., Fermon, Y., … Toham, A. K. (2007). Fish assemblages structure and function along environmental gradients in rivers of Gabon (Africa). Ecology of Freshwater Fish, 16, 315–334. https://doi.org/10.1111/j.1600-0633.2006.00222.x.
[52] Goldstein, R. M., & Meador, M. R. (2004). Comparisons of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society, 133, 971–983. https://doi.org/10.1577/T03-080.1.
[53] Jacobsen, D., Cressa, C., Mathooko, J. M., & Dudgeon, D. (2008). Macroinvertebrates: Composition, life histories and production. In (Ed.), Tropical stream ecology (pp. 65–105). London, UK: Academic Press.
[54] Oberdoff, T., Guégan, J. F., & Hugueny, B. (1995). Global scale patterns of fish species richness in rivers. Ecography, 18, 345–352. https://doi.org/10.1111/j.1600-0587.1995.tb00137.x.
[55] Ibañez, C., Belliard, J., Hughes, R. M., Irz, P., Kamdem‐Toham, A., Lamouroux, N., … Oberdorff, T. (2009). Convergence of temperate and tropical stream fish assemblages. Ecography, 32, 658–670. https://doi.org/10.1111/j.1600-0587.2008.05591.x.
[56] Hauer, F. R., & Lamberti, G. A. (2007). Methods in stream ecology, 2nd ed. London, UK: Academic Press.