首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2018 ,2018-11-22
One-Dimensional Sb2Se3 Nanorods Synthesized through a Simple Polyol Process for High-Performance Lithium-Ion Batteries
Research Article
Yuan Tian 1 Zhenghao Sun 1 Yan Zhao 1 Taizhe Tan 2 Hui Liu 1 Zhihong Chen 3
Show affiliations
DOI:10.1155/2018/4273945
Received 2018-06-29, accepted for publication 2018-09-02, Published 2018-09-02
PDF
摘要

The good crystalline Sb2Se3 nanorods have been successfully synthesized through a simple polyol process. The detailed morphological and structural characterizations reveal that nanorods are composed of Sb2Se3 single crystals oriented along the [120] orientation; the tiny Sb2Se3 nanorods are found to display a higher crystallinity with respect to thick Sb2Se3 nanorods. The nanorods have been applied as anode materials for lithium-ion batteries, with tiny Sb2Se3 nanorod anodes delivering the relatively high discharge capacity of 702 mAh g−1 at 0.1 C and could maintain the capacity of 230 mAh g−1 after 100 cycles. A more stable cycling performance is also demonstrated on tiny Sb2Se3 nanorods, which is ascribed to their more pronounced one-dimensional nanostructure.

授权许可

Copyright © 2018 Yuan Tian et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Sketch diagram of preparing Sb2Se3 nanorods.

XRD patterns of the thick Sb2Se3 and the tiny Sb2Se3 nanorods.

Raman spectrums of the thick Sb2Se3 and the tiny Sb2Se3 nanorods.

XPS data of (a) Sb 3d and (b) Se 3d for the thick Sb2Se3 and the tiny Sb2Se3 nanorods.

XPS data of (a) Sb 3d and (b) Se 3d for the thick Sb2Se3 and the tiny Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the thick Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the thick Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the thick Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the thick Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the tiny Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the tiny Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the tiny Sb2Se3 nanorods.

SEM image (a), diameter size histogram (b), TEM image (c), and HR-TEM image (d) of the tiny Sb2Se3 nanorods.

EDS mapping showing the distribution of Sb and Se of the tiny Sb2Se3 nanorods.

Galvanostatic charge and discharge profiles of (a) tiny Sb2Se3 nanorods and (b) thick Sb2Se3 nanorods as working electrodes in LIBs.

Galvanostatic charge and discharge profiles of (a) tiny Sb2Se3 nanorods and (b) thick Sb2Se3 nanorods as working electrodes in LIBs.

Cycling performance and corresponding coulombic efficiency of the thick Sb2Se3 nanorods (green) and tiny Sb2Se3 nanorods (blue) as working electrodes in LIBs.

Rate performances of (a) tiny Sb2Se3 nanorods and (b) thick Sb2Se3 nanorods.

Rate performances of (a) tiny Sb2Se3 nanorods and (b) thick Sb2Se3 nanorods.

CV curves of (a) the tiny Sb2Se3 nanorods and (b) the thick Sb2Se3 nanorods.

CV curves of (a) the tiny Sb2Se3 nanorods and (b) the thick Sb2Se3 nanorods.

EIS plots of (a) the tiny Sb2Se3 nanorods and (b) the thick Sb2Se3 nanorods at different DODs.

EIS plots of (a) the tiny Sb2Se3 nanorods and (b) the thick Sb2Se3 nanorods at different DODs.

Equivalent circuit diagram of EIS.

SEM images of (a) the tiny Sb2Se3 nanorods and (b) the thick Sb2Se3 nanorods after 50 charge/discharge cycles.

SEM images of (a) the tiny Sb2Se3 nanorods and (b) the thick Sb2Se3 nanorods after 50 charge/discharge cycles.

通讯作者

1. Yan Zhao.School of Materials Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China, hebut.edu.cn.yanzhao1984@hebut.edu.cn
2. Hui Liu.School of Materials Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China, hebut.edu.cn.liuhuihebut@163.com
3. Zhihong Chen.Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, 511458, China, cas.cn.chenzhihong1227@sina.com

推荐引用方式

Yuan Tian,Zhenghao Sun,Yan Zhao,Taizhe Tan,Hui Liu,Zhihong Chen. One-Dimensional Sb2Se3 Nanorods Synthesized through a Simple Polyol Process for High-Performance Lithium-Ion Batteries. Journal of Nanomaterials ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Zhang, Y. Wei, H. Li, Y. Zhao. et al.(2016). Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. Materials Letters.184:235-238. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[2] D. Y. W. Yu, H. E. Hoster, S. K. Batabyal. (2014). Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Scientific Reports.4(1):4562. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[3] Z. Yi, Q. Han, Y. Cheng, Y. Wu. et al.(2016). Facile synthesis of symmetric bundle-like SbS micron-structures and their application in lithium-ion battery anodes. Chemical Communications.52(49):7691-7694. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[4] M. Z. Xue, Z. W. Fu. (2008). Pulsed laser deposited SbSe anode for lithium-ion batteries. Journal of Alloys and Compounds.458(1-2):351-356. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[5] J. Ma, Y. Wang, Y. Wang, P. Peng. et al.(2011). One-dimensional SbSe nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties. CrystEngComm.13(7):2369-2374. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[6] J. Zeng, S. Wang, Q. Liu, X. Lei. et al.(2014). High-capacity V-/Sc-/Ti-doped MnO for Li/MnO batteries and structural changes at different discharge depths. Electrochimica Acta.127:115-122. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[7] X. Wang, L. Huang, Y. Zhao, Y. Zhang. et al.(2016). Synthesis of mesoporous ZnO nanosheets via facile solvothermal method as the anode materials for lithium-ion batteries. Nanoscale Research Letters.11(1):37. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[8] N. Wang, Z. Bai, Y. Qian, J. Yang. et al.(2016). Double-walled Sb@TiO nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Advanced Materials.28(21):4126-4133. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[9] Y. H. Kwon, M. Jeong, H. W. Do, J. Y. Lee. et al.(2015). Liquid–solid spinodal decomposition mediated synthesis of SbSe nanowires and their photoelectric behavior. Nanoscale.7(30):12913-12920. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[10] H. Li, Y. Wei, Y. Zhang, C. Zhang. et al.(2016). In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries. Ceramics International.42(10):12371-12377. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[11] H. Jiang, Y. Hu, S. Guo, C. Yan. et al.(2014). Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano.8(6):6038-6046. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[12] J. Lu, Q. Han, X. Yang, L. Lu. et al.(2008). Preparation of ultra-long SbSe nanoribbons via a short-time solvothermal process. Materials Letters.62(16):2415-2418. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[13] W. E. Morgan, W. J. Stec, J. R. Van Wazer. (1973). Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorganic Chemistry.12(4):953-955. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[14] J. W. Choi, D. Aurbach. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials.1(4):16013-16028. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[15] J. Yang, Y. Lai, Y. Fan, Y. Jiang. et al.(2015). Photoelectrochemically deposited SbSe thin films: deposition mechanism and characterization. RSC Advances.5(104):85592-85597. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[16] H. Liu, J. Zhang, X. Zheng, G. Liu. et al.(2016). Polyol process synthesis of metal selenide nanomaterials and their photovoltaic application. CrystEngComm.18(36):6860-6866. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[17] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont. et al.(2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature.407(6803):496-499. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[18] P. V. Prikhodchenko, J. Gun, S. Sladkevich, A. A. Mikhaylov. et al.(2012). Conversion of hydroperoxoantimonate coated graphenes to SbS@graphene for a superior lithium battery anode. Chemistry of Materials.24(24):4750-4757. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[19] R. Jin, Z. Liu, L. Yang, J. Liu. et al.(2013). Facile synthesis of sulfur doped SbSe nanosheets with enhanced electrochemical performance. Journal of Alloys and Compounds.579:209-217. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[20] R. Alcántara, F. J. Fernández-Madrigal, P. Lavela, J. L. Tirado. et al.(1999). Electrochemical reaction of lithium with the CoSb skutterudite. Journal of Materials Chemistry.9(10):2517-2521. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[21] M. Z. Xue, Z. W. Fu. (2006). Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide. Electrochemistry Communications.8(8):1250-1256. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[22] M. Winter, J. O. Besenhard, M. E. Spahr, P. Novák. et al.(1998). Insertion electrode materials for rechargeable lithium batteries. Advanced Materials.10(10):725-763. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[23] Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui. et al.(2016). Designing high-energy lithium–sulfur batteries. Chemical Society Reviews.45(20):5605-5634. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[24] R. Xu, J. Lu, K. Amine. (2015). Progress in mechanistic understanding and characterization techniques of Li-S batteries. Advanced Energy Materials.5(16, article 1500408). DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[25] Y. Zhang, Y. Li, H. Li, Y. Zhao. et al.(2016). Electrochemical performance of carbon-encapsulated FeO nanoparticles in lithium-ion batteries: morphology and particle size effects. Electrochimica Acta.216:475-483. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[26] F. J. Fernández-Madrigal, P. Lavela, C. Pérez-Vicente, J. L. Tirado. et al.(2001). Electrochemical reactions of polycrystalline CrSb in lithium batteries. Journal of Electroanalytical Chemistry.501(1-2):205-209. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
[27] L. Aldon, A. Garcia, J. Olivier-Fourcade, J.-C. Jumas. et al.(2003). Lithium insertion mechanism in Sb-based electrode materials from Sb Mössbauer spectrometry. Journal of Power Sources.119–121:585-590. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z.
文献评价指标
浏览 9次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次